IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i12p201-d1543264.html
   My bibliography  Save this article

A Sequential Importance Sampling for Estimating Multi-Period Tail Risk

Author

Listed:
  • Ye-Ji Seo

    (Department of Statistics, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea)

  • Sunggon Kim

    (Department of Statistics, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea)

Abstract

Plain or crude Monte Carlo simulation (CMC) is commonly applied for estimating multi-period tail risk measures such as value-at-risk (VaR) and expected shortfall (ES). After fitting a volatility model to the past history of returns and estimating the conditional distribution of innovations, one can simulate the return process following the fitted volatility model with the estimated conditional distribution of innovations. Repeated generation of the return processes with the desired length gives a sufficient number of simulated multi-period returns. Then, the multi-period VaR and ES are directly estimated from the empirical distribution of them. CMC is easily applicable. However, it needs to generate a huge number of multi-period returns for the accurate estimation of a tail risk measure, especially when the confidence level of the measure is close to 1. To overcome this shortcoming, we propose a sequential importance sampling, which is a modification of CMC. In the proposed method. The sampling distribution of innovations is chosen differently from the estimated conditional distribution of innovations so that the simulated multi-period losses are more severe than in the case of CMC. In other words, the simulated losses over the VaR that is wanted to estimate are common in the proposed method, which reduces very much the estimation error of ES, and requires the less simulated samples. We propose how to find the near optimal sampling distribution. The multi-period VaR and ES are estimated from the weighted empirical distribution of the simulated multi-period returns. We propose how to compute the weight of a simulated multi-period return. An empirical study is given to backtest the estimated VaRs and ESs by the proposed method, and to compare the performance of the proposed sequential importance sampling with CMC.

Suggested Citation

  • Ye-Ji Seo & Sunggon Kim, 2024. "A Sequential Importance Sampling for Estimating Multi-Period Tail Risk," Risks, MDPI, vol. 12(12), pages 1-22, December.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:12:p:201-:d:1543264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/12/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/12/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    2. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 1999. "VaR without correlations for portfolios of derivative securities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 583-602, August.
    5. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    6. Eric Ghysels & Alberto Plazzi & Rossen Valkanov & Antonio Rubia & Asad Dossani, 2019. "Direct Versus Iterated Multiperiod Volatility Forecasts," Annual Review of Financial Economics, Annual Reviews, vol. 11(1), pages 173-195, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    3. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    4. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    5. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    6. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    7. Sebastian Bayer & Timo Dimitriadis, 2018. "Regression Based Expected Shortfall Backtesting," Papers 1801.04112, arXiv.org, revised Sep 2019.
    8. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    9. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    10. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    11. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    12. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
    13. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    15. Meriem Rjiba & Michail Tsagris & Hedi Mhalla, 2015. "Bootstrap for Value at Risk Prediction," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(6), pages 362-371.
    16. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    17. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    18. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    19. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    20. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:12:p:201-:d:1543264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.