Adversarial Artificial Intelligence in Insurance: From an Example to Some Potential Remedies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jing Ai & Patrick L. Brockett & Linda L. Golden & Montserrat Guillén, 2013. "A Robust Unsupervised Method for Fraud Rate Estimation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(1), pages 121-143, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Faan & Li, Yaxin & Feng, Qianqian & Dong, Zehao & Qian, Yiming & Yan, Yi & Ho, Mun S. & Ma, Qianchen & Zhang, Dashan & Jin, Yuanzhe, 2023. "Road safety performance rating through PSI-PRIDIT: A planning tool for designing policies and identifying best practices for EAS countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
- Ina Garnefeld & Andreas Eggert & Markus Husemann-Kopetzky & Eva Böhm, 2019. "Exploring the link between payment schemes and customer fraud: a mental accounting perspective," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 595-616, July.
- Urbina, Jilber & Guillén, Montserrat, 2013.
"An application of capital allocation principles to operational risk,"
MPRA Paper
75726, University Library of Munich, Germany, revised Dec 2013.
- Urbina, Jilber & Guillén, Montserrat, 2013. "An application of capital allocation principles to operational risk," Working Papers 2072/222201, Universitat Rovira i Virgili, Department of Economics.
- Andersson, Jonas & Olden, Andreas & Rusina, Aija, 2020. "Fraud detection by a multinomial model: Separating honesty from unobserved fraud," Discussion Papers 2020/15, Norwegian School of Economics, Department of Business and Management Science.
More about this item
Keywords
AI in insurance; adversarial AI; insurance fraud; machine learning in insurance (ML);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:1:p:20-:d:1032785. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.