Risk Assessment of Polish Joint Stock Companies: Prediction of Penalties or Compensation Payments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
- Almamy, Jeehan & Aston, John & Ngwa, Leonard N., 2016. "An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK," Journal of Corporate Finance, Elsevier, vol. 36(C), pages 278-285.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
- Petropoulos, Anastasios & Siakoulis, Vasilis & Stavroulakis, Evangelos & Vlachogiannakis, Nikolaos E., 2020. "Predicting bank insolvencies using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1092-1113.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Minhas Akbar & Ahsan Akbar & Petra Maresova & Minghui Yang & Hafiz Muhammad Arshad, 2020. "Unraveling the Bankruptcy Risk‒Return Paradox across the Corporate Life Cycle," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
- Emil Exenberger & Michaela Kav?áková, 2020. "Evaluation of financial health of companies through data envelopment analysis: Selection of variables for the DEA model in R," Proceedings of Economics and Finance Conferences 10913067, International Institute of Social and Economic Sciences.
- Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
- Ahsan Akbar & Minhas Akbar & Wenjin Tang & Muhammad Azeem Qureshi, 2019. "Is Bankruptcy Risk Tied to Corporate Life-Cycle? Evidence from Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
- Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
- Oz, Ibrahim Onur & Simga-Mugan, Can, 2018. "Bankruptcy prediction models' generalizability: Evidence from emerging market economies," Advances in accounting, Elsevier, vol. 41(C), pages 114-125.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
- Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008.
"In Search of Distress Risk,"
Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
- Campbell, John Y. & Hilscher, Jens & Szilagyi, Jan, 2005. "In search of distress risk," Discussion Paper Series 1: Economic Studies 2005,27, Deutsche Bundesbank.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2005. "In Searach of Distress Risk," Harvard Institute of Economic Research Working Papers 2081, Harvard - Institute of Economic Research.
- Szilagyi, Jan & Hilscher, Jens & Campbell, John, 2008. "In Search of Distress Risk," Scholarly Articles 3199070, Harvard University Department of Economics.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2006. "In Search of Distress Risk," NBER Working Papers 12362, National Bureau of Economic Research, Inc.
- Elizabeth Demers & Philip Joos, 2007. "IPO Failure Risk," Journal of Accounting Research, Wiley Blackwell, vol. 45(2), pages 333-371, May.
- Ali Uyar & Simone Pizzi & Fabio Caputo & Cemil Kuzey & Abdullah S. Karaman, 2022. "Do shareholders reward or punish risky firms due to CSR reporting and assurance?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(5), pages 1596-1620, July.
- Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Huang, Hsing-Hua & Lee, Han-Hsing, 2013. "Product market competition and credit risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 324-340.
- Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
More about this item
Keywords
machine learning; supervised learning; classification; corporate finance; financial analysis; financial indicators;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:5:p:102-:d:813938. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.