IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i4p80-d789292.html
   My bibliography  Save this article

Machine Learning in Ratemaking, an Application in Commercial Auto Insurance

Author

Listed:
  • Spencer Matthews

    (Department of Statistics, Donald Bren School of Information and Computer Science, University of California—Irvine, Irvine, CA 92697, USA)

  • Brian Hartman

    (Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA)

Abstract

This paper explores the tuning and results of two-part models on rich datasets provided through the Casualty Actuarial Society (CAS). These datasets include bodily injury (BI), property damage (PD) and collision (COLL) coverage, each documenting policy characteristics and claims across a four-year period. The datasets are explored, including summaries of all variables, then the methods for modeling are set forth. Models are tuned and the tuning results are displayed, after which we train the final models and seek to explain select predictions. Data were provided by a private insurance carrier to the CAS after anonymizing the dataset. These data are available to actuarial researchers for well-defined research projects that have universal benefit to the insurance industry and the public. Our hope is that the methods demonstrated here can be a good foundation for future ratemaking models to be developed and tested more efficiently.

Suggested Citation

  • Spencer Matthews & Brian Hartman, 2022. "Machine Learning in Ratemaking, an Application in Commercial Auto Insurance," Risks, MDPI, vol. 10(4), pages 1-25, April.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:4:p:80-:d:789292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/4/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/4/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spencer Matthews & Brian Hartman, 2021. "mSHAP: SHAP Values for Two-Part Models," Risks, MDPI, vol. 10(1), pages 1-23, December.
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    6. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    7. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    8. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    9. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    10. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    12. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    13. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    14. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    15. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    16. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    17. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    18. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    19. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    20. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:4:p:80-:d:789292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.