IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v6y2017i4p68-d121566.html
   My bibliography  Save this article

Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny

Author

Listed:
  • Felix Müller

    (Section for Resource Conservation, Material Cycles, Minerals and Metal Industry, German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany)

  • Jan Kosmol

    (Section for Resource Conservation, Material Cycles, Minerals and Metal Industry, German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany)

  • Hermann Keßler

    (Section for Resource Conservation, Material Cycles, Minerals and Metal Industry, German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany)

  • Michael Angrick

    (Division for Emissions Trading, German Emission Allowance Trading Authority, German Environment Agency, Bismarckplatz 1, 14193 Berlin, Germany)

  • Bettina Rechenberg

    (Division for Sustainable Production and Products, Waste Management, German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany)

Abstract

Dematerialization is a paradigm in resource conservation strategies. Material use should be reduced so that resource consumption as a whole can be lowered. The benefit for humankind should be completely decoupled from the natural expenditure by a definite factor X. Instinctively, this approach is convincing, because our entire value-added chain is based on material transformation. Targets for mass-based indicators are found within the context of justification for ecological carrying capacity and intergenerational fairness, taking into account the economic and socio-political expectation of raw material scarcity. However, in light of further development of material flow indicators and the related dematerialization targets, the question arises as to what they actually stand for and what significance they have for resource conservation. Can it be assumed that pressure on the environment will decline steadily if the use of materials is reduced, whether for an economy or at the level of individual products or processes? The present narrative review paper has discussed this issue and takes into account the authors’ experience of the extended political and scientific discourse on dematerialization in Germany and Europe. As a result, a high “resource relevance” cannot be inferred from high physical material inputs at any of the levels considered. It has been shown that establishing mass-based indicators as control and target variables is questionable and that dematerialization exclusively based on such indicators without mapping other resources should be critically examined.

Suggested Citation

  • Felix Müller & Jan Kosmol & Hermann Keßler & Michael Angrick & Bettina Rechenberg, 2017. "Dematerialization—A Disputable Strategy for Resource Conservation Put under Scrutiny," Resources, MDPI, vol. 6(4), pages 1-32, December.
  • Handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:68-:d:121566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/6/4/68/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/6/4/68/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glöser, Simon & Tercero Espinoza, Luis & Gandenberger, Carsten & Faulstich, Martin, 2015. "Raw material criticality in the context of classical risk assessment," Resources Policy, Elsevier, vol. 44(C), pages 35-46.
    2. Schaffartzik, Anke & Mayer, Andreas & Eisenmenger, Nina & Krausmann, Fridolin, 2016. "Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society's skeleton," Ecological Economics, Elsevier, vol. 122(C), pages 101-110.
    3. Michael Lettenmeier & Christa Liedtke & Holger Rohn, 2014. "Eight Tons of Material Footprint—Suggestion for a Resource Cap for Household Consumption in Finland," Resources, MDPI, vol. 3(3), pages 1-28, July.
    4. Rizos, Vasileios & Tuokko, Katja & Behrens, Arno, 2017. "The Circular Economy: A review of definitions, processes and impacts," CEPS Papers 12440, Centre for European Policy Studies.
    5. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    6. J.H. Spangenberg & F. Hinterberger & S. Moll & H. Schutz, 1999. "Material flow analysis, TMR and the MIPS concept: a contribution to the development of indicators for measuring changes in consumption and production patterns," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 2(4), pages 491-505.
    7. Lucas Reijnders, 1998. "The Factor X Debate: Setting Targets for Eco‐Efficiency," Journal of Industrial Ecology, Yale University, vol. 2(1), pages 13-22, January.
    8. Eskinder D. Gemechu & Christoph Helbig & Guido Sonnemann & Andrea Thorenz & Axel Tuma, 2016. "Import-based Indicator for the Geopolitical Supply Risk of Raw Materials in Life Cycle Sustainability Assessments," Journal of Industrial Ecology, Yale University, vol. 20(1), pages 154-165, February.
    9. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    10. Romuald Dupuy & Philippe Roman & Benoît Mougenot, 2015. "Analyzing Socio-Environmental Conflicts with a Commonsian Transactional Framework: Application to a Mining Conflict in Peru," Journal of Economic Issues, Taylor & Francis Journals, vol. 49(4), pages 895-921, October.
    11. Renaud Coulomb & Simon Dietz & Maria Godunova & Thomas Bligaard Nielsen, 2015. "Critical Minerals Today and in 2030: An Analysis for OECD Countries," OECD Environment Working Papers 91, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2018. "Shedding Light on the Anthropogenic Europium Cycle in the EU–28. Marking Product Turnover and Energy Progress in the Lighting Sector," Resources, MDPI, vol. 7(3), pages 1-17, September.
    2. Mario Schmidt, 2018. "Scarcity and Environmental Impact of Mineral Resources—An Old and Never-Ending Discussion," Resources, MDPI, vol. 8(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Teresa, 2018. "Measurement of mineral supply diversity and its importance in assessing risk and criticality," Resources Policy, Elsevier, vol. 58(C), pages 202-218.
    2. Buchs, Arnaud & Calvo-Mendieta, Iratxe & Petit, Olivier & Roman, Philippe, 2021. "Challenging the ecological economics of water: Social and political perspectives," Ecological Economics, Elsevier, vol. 190(C).
    3. Tol, Richard S.J., 2017. "The structure of the climate debate," Energy Policy, Elsevier, vol. 104(C), pages 431-438.
    4. Alan Randall, 2022. "How Strong Sustainability Became Safety," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    5. Andreas Manhart & Regine Vogt & Michael Priester & Günter Dehoust & Andreas Auberger & Markus Blepp & Peter Dolega & Claudia Kämper & Jürgen Giegrich & Gerhard Schmidt & Jan Kosmol, 2019. "The environmental criticality of primary raw materials – A new methodology to assess global environmental hazard potentials of minerals and metals from mining," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 91-107, April.
    6. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    7. Simon Glöser-Chahoud & Luis Tercero Espinoza & Rainer Walz & Martin Faulstich, 2016. "Taking the Step towards a More Dynamic View on Raw Material Criticality: An Indicator Based Analysis for Germany and Japan," Resources, MDPI, vol. 5(4), pages 1-16, December.
    8. Dewulf, Jo & Blengini, Gian Andrea & Pennington, David & Nuss, Philip & Nassar, Nedal T., 2016. "Criticality on the international scene: Quo vadis?," Resources Policy, Elsevier, vol. 50(C), pages 169-176.
    9. Rasmus Noss, Bang & Trellevik, Lars-Kristian Lunde, 2022. "Transition to Marine Mining?," Discussion Papers 2022/9, Norwegian School of Economics, Department of Business and Management Science.
    10. Christa Liedtke & Katrin Bienge & Klaus Wiesen & Jens Teubler & Kathrin Greiff & Michael Lettenmeier & Holger Rohn, 2014. "Resource Use in the Production and Consumption System—The MIPS Approach," Resources, MDPI, vol. 3(3), pages 1-31, August.
    11. Alfredsson, Eva C. & Malmaeus, J. Mikael, 2019. "Real capital investments and sustainability - The case of Sweden," Ecological Economics, Elsevier, vol. 161(C), pages 216-224.
    12. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Zhu, Yongguang & Su, Hui & Xue, Shuangjiao, 2020. "Synthesized indicator for evaluating security of strategic minerals in China: A case study of lithium," Resources Policy, Elsevier, vol. 69(C).
    13. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    14. Stefan Bringezu, 2015. "Possible Target Corridor for Sustainable Use of Global Material Resources," Resources, MDPI, vol. 4(1), pages 1-30, February.
    15. Henckens, M.L.C.M. & Driessen, P.P.J. & Ryngaert, C. & Worrell, E., 2016. "The set-up of an international agreement on the conservation and sustainable use of geologically scarce mineral resources," Resources Policy, Elsevier, vol. 49(C), pages 92-101.
    16. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    17. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    18. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    19. Dale W. Henderson & Stephen W. Salant, 1976. "Market anticipations, government policy, and the price of gold," International Finance Discussion Papers 81, Board of Governors of the Federal Reserve System (U.S.).
    20. Cem Iskender Aydin & Begum Ozkaynak & Beatriz Rodríguez-Labajos & Taylan Yenilmez, 2017. "Network effects in environmental justice struggles: An investigation of conflicts between mining companies and civil society organizations from a network perspective," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:68-:d:121566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.