IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i2p15-d737930.html
   My bibliography  Save this article

Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia

Author

Listed:
  • Yani Aranguren Díaz

    (Unidad de Investigación Científica, Desarrollo e Innovación en Microbiología, Universidad Simón Bolívar, Barranquilla 080002, Colombia)

  • Edy Monterroza Martínez

    (Unidad de Investigación Científica, Desarrollo e Innovación en Microbiología, Universidad Simón Bolívar, Barranquilla 080002, Colombia)

  • Laura Carillo García

    (Unidad de Investigación Científica, Desarrollo e Innovación en Microbiología, Universidad Simón Bolívar, Barranquilla 080002, Colombia)

  • María C. Serrano

    (Unidad de Investigación Científica, Desarrollo e Innovación en Microbiología, Universidad Simón Bolívar, Barranquilla 080002, Colombia)

  • Elwi Machado Sierra

    (Unidad de Investigación Científica, Desarrollo e Innovación en Microbiología, Universidad Simón Bolívar, Barranquilla 080002, Colombia)

Abstract

Colombia is the country with the sixth highest amount of water reserves in the world, and 25% of its territory is covered by wetlands. However, approximately 50% of the country’s water is estimated to exhibit some type of contamination related to anthropic activities. An alternative for the treatment and the recovery of its bodies of water is the use of microalgae, unicellular, and mixotrophic microorganisms, as these bioreactors are highly adaptable to the environment, and their maintenance costs are minimal, because they feed on almost any substrate. In fact, different countries have already reported using microalgae as bioremediators for bodies of water. The use of these microphytes is efficient because they metabolize, degrade, or bioaccumulate heavy metals, pesticides, emerging pollutants, and antibiotics. In general, strategies relying on microalgae to eliminate pollutants are very similar to one another. For example, the first stage often includes a process of bioadsorption, consumption, degradation, and accumulation, wherein the microalgae use molecules generated from their own cellular metabolism. Some pilot studies focusing on the phycoremediation of marshes and other bodies of water have already been conducted in Colombia; however, more studies on process optimization, effectively leveraging the biodiversity of the existing microalgae, and better adapting microalgae to the region are still required.

Suggested Citation

  • Yani Aranguren Díaz & Edy Monterroza Martínez & Laura Carillo García & María C. Serrano & Elwi Machado Sierra, 2022. "Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia," Resources, MDPI, vol. 11(2), pages 1-20, January.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:15-:d:737930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/2/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/2/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Giovanna Salbitani & Simona Carfagna, 2021. "Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    3. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    4. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Rizwan, Muhammad & Mujtaba, Ghulam & Memon, Sheraz Ahmed & Lee, Kisay & Rashid, Naim, 2018. "Exploring the potential of microalgae for new biotechnology applications and beyond: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 394-404.
    6. Sandeep Panda & Srabani Mishra & Ata Akcil & Mehmet Ali Kucuker, 2021. "Microalgal potential for nutrient-energy-wastewater nexus: Innovations, current trends and future directions," Energy & Environment, , vol. 32(4), pages 604-634, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    3. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2022. "Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation," Energies, MDPI, vol. 15(8), pages 1-18, April.
    6. Héctor Rodríguez-Rángel & Dulce María Arias & Luis Alberto Morales-Rosales & Victor Gonzalez-Huitron & Mario Valenzuela Partida & Joan García, 2022. "Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems," Energies, MDPI, vol. 15(7), pages 1-18, March.
    7. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    8. Rooma Waqar & Sultana Rahman & Javed Iqbal & Muhammad Kaleem & Lubna Anjum Minhas & Nabi Ullah & Farzana Kausar & Wadie Chalgham & Fahad A. Al-Misned & Hamed A. El-Serehy & Abdul Samad Mumtaz, 2023. "Biosorption Potential of Desmodesmus sp. for the Sequestration of Cadmium and Lead from Contaminated Water," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    9. Patel, Anil Kumar & Singhania, Reeta Rani & Dong, Cheng-Di & Obulisami, Parthiba Karthikeyan & Sim, Sang Jun, 2021. "Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    11. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    12. Vasiliki Patrinou & Olga N. Tsolcha & Triantafyllos I. Tatoulis & Natassa Stefanidou & Marianna Dourou & Maria Moustaka-Gouni & George Aggelis & Athanasia G. Tekerlekopoulou, 2020. "Biotreatment of Poultry Waste Coupled with Biodiesel Production Using Suspended and Attached Growth Microalgal-Based Systems," Sustainability, MDPI, vol. 12(12), pages 1-28, June.
    13. Thiviyanathan, Vimal Angela & Ker, Pin Jern & Hoon Tang, Shirley Gee & Amin, Eric PP. & Yee, Willy & Hannan, M.A. & Jamaludin, Zaini & Nghiem, Long D. & Indra Mahlia, Teuku Meurah, 2024. "Microalgae biomass and biomolecule quantification: Optical techniques, challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Jiang, Liqun & Li, Yizhen & Pei, Haiyan, 2021. "Algal–bacterial consortia for bioproduct generation and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Leong, Wai Hong & Kiatkittipong, Worapon & Lam, Man Kee & Khoo, Kuan Shiong & Show, Pau Loke & Mohamad, Mardawani & Chong, Siewhui & Abdurrahman, Muslim & Lim, Jun Wei, 2022. "Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel," Renewable Energy, Elsevier, vol. 184(C), pages 443-451.
    17. Ehab M. Ammar & Neha Arora & George P. Philippidis, 2020. "The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products," Energies, MDPI, vol. 13(23), pages 1-25, December.
    18. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Abdullah Omar & Fares Almomani & Hazim Qiblawey & Kashif Rasool, 2024. "Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies," Sustainability, MDPI, vol. 16(5), pages 1-37, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:15-:d:737930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.