IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p385-d499638.html
   My bibliography  Save this article

On Correspondence between Selective CPS Transformation and Selective Double Negation Translation

Author

Listed:
  • Hyeonseung Im

    (Department of Computer Science and Engineering, Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea)

Abstract

A double negation translation (DNT) embeds classical logic into intuitionistic logic. Such translations correspond to continuation passing style (CPS) transformations in programming languages via the Curry-Howard isomorphism. A selective CPS transformation uses a type and effect system to selectively translate only nontrivial expressions possibly with computational effects into CPS functions. In this paper, we review the conventional call-by-value (CBV) CPS transformation and its corresponding DNT, and provide a logical account of a CBV selective CPS transformation by defining a selective DNT via the Curry-Howard isomorphism. By using an annotated proof system derived from the corresponding type and effect system, our selective DNT translates classical proofs into equivalent intuitionistic proofs, which are smaller than those obtained by the usual DNTs. We believe that our work can serve as a reference point for further study on the Curry-Howard isomorphism between CPS transformations and DNTs.

Suggested Citation

  • Hyeonseung Im, 2021. "On Correspondence between Selective CPS Transformation and Selective Double Negation Translation," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:385-:d:499638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/385/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:385-:d:499638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.