IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i2p150-d478889.html
   My bibliography  Save this article

Existence of Absolutely Continuous Fundamental Matrix of Linear Fractional System with Distributed Delays

Author

Listed:
  • Hristo Kiskinov

    (Faculty of Mathematics and Informatics, University of Plovdiv, 4000 Plovdiv, Bulgaria)

  • Ekaterina Madamlieva

    (Faculty of Mathematics and Informatics, University of Plovdiv, 4000 Plovdiv, Bulgaria)

  • Magdalena Veselinova

    (Faculty of Mathematics and Informatics, University of Plovdiv, 4000 Plovdiv, Bulgaria)

  • Andrey Zahariev

    (Faculty of Mathematics and Informatics, University of Plovdiv, 4000 Plovdiv, Bulgaria)

Abstract

The goal of the present paper is to obtain sufficient conditions that guaranty the existence and uniqueness of an absolutely continuous fundamental matrix for a retarded linear fractional differential system with Caputo type derivatives and distributed delays. Some applications of the obtained result concerning the integral representation of the solutions are given too.

Suggested Citation

  • Hristo Kiskinov & Ekaterina Madamlieva & Magdalena Veselinova & Andrey Zahariev, 2021. "Existence of Absolutely Continuous Fundamental Matrix of Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:150-:d:478889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/2/150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/2/150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai Zhang & Jinde Cao & Wei Jiang, 2013. "General Solution of Linear Fractional Neutral Differential Difference Equations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, June.
    2. Andrey Zahariev & Hristo Kiskinov, 2020. "Asymptotic Stability of the Solutions of Neutral Linear Fractional System with Nonlinear Perturbation," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    2. Ekaterina Madamlieva & Marian Milev & Tsvetana Stoyanova, 2023. "On Stability Criteria Induced by the Resolvent Kernel for a Fractional Neutral Linear System with Distributed Delays," Mathematics, MDPI, vol. 11(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hristo Kiskinov & Mariyan Milev & Andrey Zahariev, 2022. "About the Resolvent Kernel of Neutral Linear Fractional System with Distributed Delays," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    2. Aydin, Mustafa & Mahmudov, Nazim I., 2022. "On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Ekaterina Madamlieva & Hristo Kiskinov & Milena Petkova & Andrey Zahariev, 2022. "On the Preservation with Respect to Nonlinear Perturbations of the Stability Property for Nonautonomous Linear Neutral Fractional Systems with Distributed Delays," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    4. Ekaterina Madamlieva & Mihail Konstantinov & Marian Milev & Milena Petkova, 2020. "Integral Representation for the Solutions of Autonomous Linear Neutral Fractional Systems with Distributed Delay," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    5. Ekaterina Madamlieva & Marian Milev & Tsvetana Stoyanova, 2023. "On Stability Criteria Induced by the Resolvent Kernel for a Fractional Neutral Linear System with Distributed Delays," Mathematics, MDPI, vol. 11(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:150-:d:478889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.