IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i2p116-d476019.html
   My bibliography  Save this article

On a New Geometric Constant Related to the Euler-Lagrange Type Identity in Banach Spaces

Author

Listed:
  • Qi Liu

    (School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
    These authors contributed equally to this work.)

  • Yongjin Li

    (School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
    These authors contributed equally to this work.)

Abstract

In this paper, we will introduce a new geometric constant L YJ ( λ , μ , X ) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and L YJ ( λ , μ , X ) . Also, this new coefficient is computed for X being concrete space.

Suggested Citation

  • Qi Liu & Yongjin Li, 2021. "On a New Geometric Constant Related to the Euler-Lagrange Type Identity in Banach Spaces," Mathematics, MDPI, vol. 9(2), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:116-:d:476019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/2/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/2/116/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:116-:d:476019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.