Author
Listed:
- Junqiang Yang
(School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
- Wenbing Tang
(Software Engineering Institute, East China Normal University, Shanghai 200062, China)
- Zuohua Ding
(School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract
During the target tracking process of unmanned aerial vehicles (UAVs), the target may disappear from view or be fully occluded by other objects, resulting in tracking failure. Therefore, determining how to identify tracking failure and re-detect the target is the key to the long-term target tracking of UAVs. Kernelized correlation filter (KCF) has been very popular for its satisfactory speed and accuracy since it was proposed. It is very suitable for UAV target tracking systems with high real-time requirements. However, it cannot detect tracking failure, so it is not suitable for long-term target tracking. Based on the above research, we propose an improved KCF to match long-term target tracking requirements. Firstly, we introduce a confidence mechanism to evaluate the target tracking results to determine the status of target tracking. Secondly, the tracking model update strategy is designed to make the model suffer from less background information interference, thereby improving the robustness of the algorithm. Finally, the Normalized Cross Correlation (NCC) template matching is used to make a regional proposal first, and then the tracking model is used for target re-detection. Then, we successfully apply the algorithm to the UAV system. The system uses binocular cameras to estimate the target position accurately, and we design a control method to keep the target in the UAV’s field of view. Our algorithm has achieved the best results in both short-term and long-term evaluations of experiments on tracking benchmarks, which proves that the algorithm is superior to the baseline algorithm and has quite good performance. Outdoor experiments show that the developed UAV system can achieve long-term, autonomous target tracking.
Suggested Citation
Junqiang Yang & Wenbing Tang & Zuohua Ding, 2021.
"Long-Term Target Tracking of UAVs Based on Kernelized Correlation Filter,"
Mathematics, MDPI, vol. 9(23), pages 1-18, November.
Handle:
RePEc:gam:jmathe:v:9:y:2021:i:23:p:3006-:d:686337
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3006-:d:686337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.