IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2850-d676003.html
   My bibliography  Save this article

Temporal Degree-Degree and Closeness-Closeness: A New Centrality Metrics for Social Network Analysis

Author

Listed:
  • Mahmoud Elmezain

    (Computer Science Division, Faculty of Science, Tanta University, Tanta 31527, Egypt
    Faculty of Science and Computer Engineering, Taibah University, Yanbu 966144, Saudi Arabia)

  • Ebtesam A. Othman

    (Mathematics & Computer Science Department, Faculty of Science, Menoufiya University, Menoufia 32511, Egypt)

  • Hani M. Ibrahim

    (Faculty of Science and Computer Engineering, Taibah University, Yanbu 966144, Saudi Arabia
    Mathematics & Computer Science Department, Faculty of Science, Menoufiya University, Menoufia 32511, Egypt)

Abstract

In the area of network analysis, centrality metrics play an important role in defining the “most important” actors in a social network. However, nowadays, most types of networks are dynamic, meaning their topology changes over time. The connection weights and the strengths of social links between nodes are an important concept in a social network. The new centrality measures are proposed for weighted networks, which relies on a time-ordered weighted graph model, generalized temporal degree and closeness centrality. Furthermore, two measures—Temporal Degree-Degree and Temporal Closeness-Closeness—are employed to better understand the significance of nodes in weighted dynamic networks. Our study is caried out according to real dynamic weighted networks dataset of a university-based karate club. Through extensive experiments and discussions of the proposed metrics, our analysis proves that there is an effectiveness on the impact of each node throughout social networks.

Suggested Citation

  • Mahmoud Elmezain & Ebtesam A. Othman & Hani M. Ibrahim, 2021. "Temporal Degree-Degree and Closeness-Closeness: A New Centrality Metrics for Social Network Analysis," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2850-:d:676003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Li & Yan, Xiangbin, 2022. "A directed collaboration network for exploring the order of scientific collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    2. Sandra Cristina Oliveira & Juliana Cobre & Danilo Florentino Pereira, 2021. "A measure of reliability for scientific co-authorship networks using fuzzy logic," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4551-4563, June.
    3. Alireza Abbasi & Mahdi Jalili & Abolghasem Sadeghi-Niaraki, 2018. "Influence of network-based structural and power diversity on research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 579-590, October.
    4. Sameer Kumar & Jariah Mohd. Jan, 2013. "Mapping research collaborations in the business and management field in Malaysia, 1980–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 491-517, December.
    5. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    6. Carlo D'Ippoliti, 2021. "“Many‐Citedness”: Citations Measure More Than Just Scientific Quality," Journal of Economic Surveys, Wiley Blackwell, vol. 35(5), pages 1271-1301, December.
    7. Jungwon Yoon & Joshua SungWoo Yang & Han Woo Park, 2017. "Quintuple helix structure of Sino-Korean research collaboration in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 61-81, October.
    8. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.
    9. Chao Lu & Yingyi Zhang & Yong‐Yeol Ahn & Ying Ding & Chenwei Zhang & Dandan Ma, 2020. "Co‐contributorship network and division of labor in individual scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1162-1178, October.
    10. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    11. Konstantin Fursov & Alina Kadyrova, 2017. "How the analysis of transitionary references in knowledge networks and their centrality characteristics helps in understanding the genesis of growing technology areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1947-1963, June.
    12. Guijie Zhang & Luning Liu & Yuqiang Feng & Zhen Shao & Yongli Li, 2014. "Cext-N index: a network node centrality measure for collaborative relationship distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 291-307, October.
    13. He, Bing & Ding, Ying & Tang, Jie & Reguramalingam, Vignesh & Bollen, Johan, 2013. "Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective," Journal of Informetrics, Elsevier, vol. 7(1), pages 117-128.
    14. Yongjun Zhu & Lihong Quan & Pei‐Ying Chen & Meen Chul Kim & Chao Che, 2023. "Predicting coauthorship using bibliographic network embedding," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(4), pages 388-401, April.
    15. Julia Müller & Thorsten Upmann, 2017. "Eigenvalue Productivity: Measurement of Individual Contributions in Teams," CESifo Working Paper Series 6679, CESifo.
    16. Witting Antje, 2015. "Measuring the Use of Knowledge in Policy Development," Central European Journal of Public Policy, Sciendo, vol. 9(2), pages 54-62, December.
    17. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    18. Saikou Y. Diallo & Christopher J. Lynch & Ross Gore & Jose J. Padilla, 2016. "Identifying key papers within a journal via network centrality measures," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1005-1020, June.
    19. Sameer Kumar & Jariah Mohd. Jan, 2014. "Research collaboration networks of two OIC nations: comparative study between Turkey and Malaysia in the field of ‘Energy Fuels’, 2009–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 387-414, January.
    20. Jingwei Zheng & Ke Zhang & Boya Han & Jiayi Hou, 2023. "Research Interdisciplinarity and Citation Impact: A Network Analysis of Social Networking Sites Research," SAGE Open, , vol. 13(3), pages 21582440231, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2850-:d:676003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.