IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i20p2606-d657753.html
   My bibliography  Save this article

On Third-Order Bronze Fibonacci Numbers

Author

Listed:
  • Mücahit Akbiyik

    (Department of Mathematics, Beykent University, Istanbul 34520, Turkey)

  • Jeta Alo

    (Department of Mathematics, Beykent University, Istanbul 34520, Turkey)

Abstract

In this study, we firstly obtain De Moivre-type identities for the second-order Bronze Fibonacci sequences. Next, we construct and define the third-order Bronze Fibonacci, third-order Bronze Lucas and modified third-order Bronze Fibonacci sequences. Then, we define the generalized third-order Bronze Fibonacci sequence and calculate the De Moivre-type identities for these sequences. Moreover, we find the generating functions, Binet’s formulas, Cassini’s identities and matrix representations of these sequences and examine some interesting identities related to the third-order Bronze Fibonacci sequences. Finally, we present an encryption and decryption application that uses our obtained results and we present an illustrative example.

Suggested Citation

  • Mücahit Akbiyik & Jeta Alo, 2021. "On Third-Order Bronze Fibonacci Numbers," Mathematics, MDPI, vol. 9(20), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2606-:d:657753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/20/2606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/20/2606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flaut, Cristina & Savin, Diana, 2019. "Some remarks regarding l-elements defined in algebras obtained by the Cayley–Dickson process," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 112-116.
    2. Stakhov, A.P., 2006. "Fibonacci matrices, a generalization of the “Cassini formula”, and a new coding theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 56-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivana Matoušová & Pavel Trojovský, 2020. "On Coding by (2, q )-Distance Fibonacci Numbers," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    2. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    3. Lyes Ait-Amrane & Djilali Behloul, 2022. "Generalized hyper-Lucas numbers and applications," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 62-75, March.
    4. Kılıç, Emrah, 2009. "The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial representations, sums," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2047-2063.
    5. Basu, Manjusri & Prasad, Bandhu, 2009. "The generalized relations among the code elements for Fibonacci coding theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2517-2525.
    6. Koshkin, Sergiy & Styers, Taylor, 2017. "From golden to unimodular cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 208-214.
    7. Emanuele Bellini & Chiara Marcolla & Nadir Murru, 2021. "An Application of p -Fibonacci Error-Correcting Codes to Cryptography," Mathematics, MDPI, vol. 9(7), pages 1-17, April.
    8. Basu, Manjusri & Prasad, Bandhu, 2009. "Coding theory on the m-extension of the Fibonacci p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2522-2530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2606-:d:657753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.