IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2378-d642716.html
   My bibliography  Save this article

Adapting Hidden Naive Bayes for Text Classification

Author

Listed:
  • Shengfeng Gan

    (College of Computer, Hubei University of Education, Wuhan 430205, China)

  • Shiqi Shao

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

  • Long Chen

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

  • Liangjun Yu

    (College of Computer, Hubei University of Education, Wuhan 430205, China)

  • Liangxiao Jiang

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

Abstract

Due to its simplicity, efficiency, and effectiveness, multinomial naive Bayes (MNB) has been widely used for text classification. As in naive Bayes (NB), its assumption of the conditional independence of features is often violated and, therefore, reduces its classification performance. Of the numerous approaches to alleviating its assumption of the conditional independence of features, structure extension has attracted less attention from researchers. To the best of our knowledge, only structure-extended MNB (SEMNB) has been proposed so far. SEMNB averages all weighted super-parent one-dependence multinomial estimators; therefore, it is an ensemble learning model. In this paper, we propose a single model called hidden MNB (HMNB) by adapting the well-known hidden NB (HNB). HMNB creates a hidden parent for each feature, which synthesizes all the other qualified features’ influences. For HMNB to learn, we propose a simple but effective learning algorithm without incurring a high-computational-complexity structure-learning process. Our improved idea can also be used to improve complement NB (CNB) and the one-versus-all-but-one model (OVA), and the resulting models are simply denoted as HCNB and HOVA, respectively. The extensive experiments on eleven benchmark text classification datasets validate the effectiveness of HMNB, HCNB, and HOVA.

Suggested Citation

  • Shengfeng Gan & Shiqi Shao & Long Chen & Liangjun Yu & Liangxiao Jiang, 2021. "Adapting Hidden Naive Bayes for Text Classification," Mathematics, MDPI, vol. 9(19), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2378-:d:642716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2378/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jani Dugonik & Mirjam Sepesy Maučec & Domen Verber & Janez Brest, 2023. "Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    2. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Zana Azeez Kakarash & Ali Awadh Al-Qahtani & Abdullah K. Alanazi & Hala H. Alhashimi & Ehsan Eftekhari-Zadeh & Ehsan Nazemi, 2022. "Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime," Mathematics, MDPI, vol. 10(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2378-:d:642716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.