IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2349-d640299.html
   My bibliography  Save this article

Caliber and Chain Conditions in Soft Topologies

Author

Listed:
  • José Carlos R. Alcantud

    (BORDA Research Unit and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, E37007 Salamanca, Spain)

  • Tareq M. Al-shami

    (Department of Mathematics, Sana’a University, Sana’a P.O. Box 1247, Yemen)

  • A. A. Azzam

    (Department of Mathematics, Faculty of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
    Department of Mathematics, Faculty of Science, New Valley University, Elkharga 72511, Egypt)

Abstract

In this paper, we contribute to the growing literature on soft topology. Its theoretical underpinning merges point-set or classical topology with the characteristics of soft sets (a model for the representation of uncertain knowledge initiated in 1999). We introduce two types of axioms that generalize suitable concepts of soft separability. They are respectively concerned with calibers and chain conditions. We investigate explicit procedures for the construction of non-trivial soft topological spaces that satisfy these new axioms. Then we explore the role of cardinality in their study, and the relationships among these and other properties. Our results bring to light a fruitful field for future research in soft topology.

Suggested Citation

  • José Carlos R. Alcantud & Tareq M. Al-shami & A. A. Azzam, 2021. "Caliber and Chain Conditions in Soft Topologies," Mathematics, MDPI, vol. 9(19), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2349-:d:640299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tareq M. Al-shami & Ljubiša D. R. Kočinac & Baravan A. Asaad, 2020. "Sum of Soft Topological Spaces," Mathematics, MDPI, vol. 8(6), pages 1-12, June.
    2. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    3. Athar Kharal & B. Ahmad, 2011. "Mappings On Soft Classes," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 471-481.
    4. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    2. Hougaard, Jens Leth & Tvede, Mich, 2002. "Benchmark selection: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 137(1), pages 218-228, February.
    3. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    4. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    5. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    6. Llinares, Juan-Vicente & Sanchez, M. Carmen, 1999. "Non-binary choice functions on non-compact sets," Economics Letters, Elsevier, vol. 63(1), pages 29-32, April.
    7. Nehring, Klaus, 1996. "Maximal elements of non-binary choice functions on compact sets," Economics Letters, Elsevier, vol. 50(3), pages 337-340, March.
    8. Gutiérrez, José Manuel, 2009. "A characterization of compactness through preferences," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 131-133, January.
    9. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    10. Kukushkin, Nikolai S., 2008. "Maximizing an interval order on compact subsets of its domain," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 195-206, September.
    11. Kukushkin, Nikolai S., 2018. "Better response dynamics and Nash equilibrium in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 68-78.
    12. John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
    13. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    14. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    15. Kukushkin, Nikolai S., 2006. "On the choice of most-preferred alternatives," MPRA Paper 803, University Library of Munich, Germany.
    16. J. C. R. Alcantud & Carlos Alós-Ferrer, 2002. "Choice-Nash Equilibria," Vienna Economics Papers vie0209, University of Vienna, Department of Economics.
    17. Samer Al-Ghour & Dina Abuzaid & Monia Naghi, 2024. "Soft Weakly Quasi-Continuous Functions Between Soft Topological Spaces," Mathematics, MDPI, vol. 12(20), pages 1-19, October.
    18. J. C. R. Alcantud & Carlos Alós-Ferrer, 2002. "Choice-Nash Equilibria," Vienna Economics Papers 0209, University of Vienna, Department of Economics.
    19. Alcantud, J. C. R. & Manrique, A., 2001. "Continuous representation by a money-metric function," Mathematical Social Sciences, Elsevier, vol. 41(3), pages 365-373, May.
    20. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2349-:d:640299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.