IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2183-d630506.html
   My bibliography  Save this article

Some Notes on a Formal Algebraic Structure of Cryptology

Author

Listed:
  • Vicente Jara-Vera

    (Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones (Escuela Técnica Superior de Ingenieros de Telecomunicación), Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain)

  • Carmen Sánchez-Ávila

    (Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones (Escuela Técnica Superior de Ingenieros de Telecomunicación), Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain)

Abstract

Cryptology, since its advent as an art, art of secret writing, has slowly evolved and changed, above all since the middle of the last century. It has gone on to obtain a more solid rank as an applied mathematical science. We want to propose some annotations in this regard in this paper. To do this, and after reviewing the broad spectrum of methods and systems throughout history, and from the traditional classification, we offer a reordering in a more compact and complete way by placing the cryptographic diversity from the algebraic binary relations. This foundation of cryptological operations from the principles of algebra is enriched by adding what we call pre-cryptological operations which we show as a necessary complement to the entire structure of cryptology. From this framework, we believe that it is improved the diversity of questions related to the meaning, the fundamentals, the statute itself, and the possibilities of cryptological science.

Suggested Citation

  • Vicente Jara-Vera & Carmen Sánchez-Ávila, 2021. "Some Notes on a Formal Algebraic Structure of Cryptology," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2183-:d:630506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2183/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2183-:d:630506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.