Author
Listed:
- Nuttanon Songsuwan
(Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand)
- Thiradet Jiarasuksakun
(Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand)
- Anuwat Tangthanawatsakul
(Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Mathematics and Statistics with Applications (MaSA), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand)
- Pawaton Kaemawichanurat
(Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Mathematics and Statistics with Applications (MaSA), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand)
Abstract
A Cop and Drunken Robber (CDR) game is one variation of a famous combinatorial game, called Cops and Robbers, which has been extensively studied and applied in the area of theoretical and computer science as demonstrated by several conferences and publications. In this paper, for a natural number n , we present two strategies for a single cop to chase a drunken robber on n -dimensional infinite-grid graphs. Both strategies show that if the initial distance between the cop and the drunken robber is s , then the expected capture time is s + o ( s ) .
Suggested Citation
Nuttanon Songsuwan & Thiradet Jiarasuksakun & Anuwat Tangthanawatsakul & Pawaton Kaemawichanurat, 2021.
"A Cop and Drunken Robber Game on n -Dimensional Infinite-Grid Graphs,"
Mathematics, MDPI, vol. 9(17), pages 1-18, August.
Handle:
RePEc:gam:jmathe:v:9:y:2021:i:17:p:2107-:d:626410
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2107-:d:626410. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.