Author
Listed:
- Chonghao Chen
(Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)
- Jianming Zheng
(Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)
- Honghui Chen
(Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)
Abstract
Fact verification aims to evaluate the authenticity of a given claim based on the evidence sentences retrieved from Wikipedia articles. Existing works mainly leverage the natural language inference methods to model the semantic interaction of claim and evidence, or further employ the graph structure to capture the relation features between multiple evidences. However, previous methods have limited representation ability in encoding complicated units of claim and evidences, and thus cannot support sophisticated reasoning. In addition, a limited amount of supervisory signals lead to the graph encoder could not distinguish the distinctions of different graph structures and weaken the encoding ability. To address the above issues, we propose a Knowledge-Enhanced Graph Attention network (KEGA) for fact verification, which introduces a knowledge integration module to enhance the representation of claims and evidences by incorporating external knowledge. Moreover, KEGA leverages an auxiliary loss based on contrastive learning to fine-tune the graph attention encoder and learn the discriminative features for the evidence graph. Comprehensive experiments conducted on FEVER, a large-scale benchmark dataset for fact verification, demonstrate the superiority of our proposal in both the multi-evidences and single-evidence scenarios. In addition, our findings show that the background knowledge for words can effectively improve the model performance.
Suggested Citation
Chonghao Chen & Jianming Zheng & Honghui Chen, 2021.
"Knowledge-Enhanced Graph Attention Network for Fact Verification,"
Mathematics, MDPI, vol. 9(16), pages 1-18, August.
Handle:
RePEc:gam:jmathe:v:9:y:2021:i:16:p:1949-:d:614691
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1949-:d:614691. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.