IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1895-d611184.html
   My bibliography  Save this article

A Link between Approximation Theory and Summability Methods via Four-Dimensional Infinite Matrices

Author

Listed:
  • Hari M. Srivastava

    (Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan
    Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy)

  • Khursheed J. Ansari

    (Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Faruk Özger

    (Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir 35620, Turkey)

  • Zeynep Ödemiş Özger

    (Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir 35620, Turkey)

Abstract

In this study, we present a link between approximation theory and summability methods by constructing bivariate Bernstein-Kantorovich type operators on an extended domain with reparametrized knots. We use a statistical convergence type and power series method to obtain certain Korovkin type theorems, and we study certain rates of convergences related to these summability methods. Furthermore, we numerically analyze the theoretical results and provide some computer graphics to emphasize the importance of this study.

Suggested Citation

  • Hari M. Srivastava & Khursheed J. Ansari & Faruk Özger & Zeynep Ödemiş Özger, 2021. "A Link between Approximation Theory and Summability Methods via Four-Dimensional Infinite Matrices," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1895-:d:611184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mursaleen, M. & Ansari, Khursheed J. & Khan, Asif, 2015. "On (p, q)-analogue of Bernstein operators," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 874-882.
    2. Mursaleen, M. & Ansari, Khursheed J. & Khan, Asif, 2016. "Erratum to ``On (p, q)-analogue of Bernstein Operators'' [Appl. Math. Comput. 266 (2015) 874–882]," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 70-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faruk Özger & Ekrem Aljimi & Merve Temizer Ersoy, 2022. "Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators," Mathematics, MDPI, vol. 10(12), pages 1-21, June.
    2. Francesco Aldo Costabile & Maria Italia Gualtieri & Anna Napoli, 2022. "General Odd and Even Central Factorial Polynomial Sequences," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    3. Hari Mohan Srivastava, 2022. "Higher Transcendental Functions and Their Multi-Disciplinary Applications," Mathematics, MDPI, vol. 10(24), pages 1-3, December.
    4. Qing-Bo Cai & Khursheed J. Ansari & Merve Temizer Ersoy & Faruk Özger, 2022. "Statistical Blending-Type Approximation by a Class of Operators That Includes Shape Parameters λ and α," Mathematics, MDPI, vol. 10(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Zeng & Qing-Bo Cai & Xiao-Wei Xu, 2020. "A -Statistical Convergence Properties of Kantorovich Type λ -Bernstein Operators Via ( p , q )-Calculus," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    2. Julalak Prabseang & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    3. Kanat, K. & Sofyalıoğlu, M., 2018. "Some approximation results for Stancu type Lupaş–Schurer operators based on (p, q)-integers," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 129-142.
    4. Mursaleen, M. & Ansari, Khursheed J. & Khan, Asif, 2016. "Erratum to ``On (p, q)-analogue of Bernstein Operators'' [Appl. Math. Comput. 266 (2015) 874–882]," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 70-71.
    5. Mursaleen, M. & Naaz, Ambreen & Khan, Asif, 2019. "Improved approximation and error estimations by King type (p, q)-Szász-Mirakjan Kantorovich operators," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 175-185.
    6. Cai, Qing-Bo & Zhou, Guorong, 2016. "On (p, q)-analogue of Kantorovich type Bernstein–Stancu–Schurer operators," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 12-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1895-:d:611184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.