IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1854-d609257.html
   My bibliography  Save this article

On Machine-Learning Morphological Image Operators

Author

Listed:
  • Nina S. T. Hirata

    (Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-090, Brazil)

  • George A. Papakostas

    (HUMAIN-Lab, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece)

Abstract

Morphological operators are nonlinear transformations commonly used in image processing. Their theoretical foundation is based on lattice theory, and it is a well-known result that a large class of image operators can be expressed in terms of two basic ones, the erosions and the dilations. In practice, useful operators can be built by combining these two operators, and the new operators can be further combined to implement more complex transformations. The possibility of implementing a compact combination that performs a complex transformation of images is particularly appealing in resource-constrained hardware scenarios. However, finding a proper combination may require a considerable trial-and-error effort. This difficulty has motivated the development of machine-learning-based approaches for designing morphological image operators. In this work, we present an overview of this topic, divided in three parts. First, we review and discuss the representation structure of morphological image operators. Then we address the problem of learning morphological image operators from data, and how representation manifests in the formulation of this problem as well as in the learned operators. In the last part we focus on recent morphological image operator learning methods that take advantage of deep-learning frameworks. We close with discussions and a list of prospective future research directions.

Suggested Citation

  • Nina S. T. Hirata & George A. Papakostas, 2021. "On Machine-Learning Morphological Image Operators," Mathematics, MDPI, vol. 9(16), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1854-:d:609257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1854/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1854-:d:609257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.