IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1846-d608755.html
   My bibliography  Save this article

Progress on Roman and Weakly Connected Roman Graphs

Author

Listed:
  • Joanna Raczek

    (Department of Algorithms and Systems Modelling, Faculty of Electronics, Telecommunications and Informatics, Gdańsk Tech, 80-233 Gdańsk, Poland)

  • Rita Zuazua

    (Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico)

Abstract

A graph G for which γ R ( G ) = 2 γ ( G ) is the Roman graph , and if γ R w c ( G ) = 2 γ w c ( G ) , then G is the weakly connected Roman graph . In this paper, we show that the decision problem of whether a bipartite graph is Roman is a co-NP-hard problem. Next, we prove similar results for weakly connected Roman graphs. We also study Roman trees improving the result of M.A. Henning’s A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002). Moreover, we give a characterization of weakly connected Roman trees.

Suggested Citation

  • Joanna Raczek & Rita Zuazua, 2021. "Progress on Roman and Weakly Connected Roman Graphs," Mathematics, MDPI, vol. 9(16), pages 1-8, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1846-:d:608755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1846/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1846-:d:608755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.