IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1721-d598960.html
   My bibliography  Save this article

High-Harmonic Injection-Based Brushless Wound Field Synchronous Machine Topology

Author

Listed:
  • Syed Sabir Hussain Bukhari

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan
    School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea)

  • Fareed Hussain Mangi

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan)

  • Irfan Sami

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea)

  • Qasim Ali

    (Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan)

  • Jong-Suk Ro

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06910, Korea
    Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06910, Korea)

Abstract

This paper discusses the design and analysis of a high-harmonic injection-based field excitation scheme for the brushless operation of wound field synchronous machines (WFSMs) in order to achieve a higher efficiency. The proposed scheme involves two inverters. One of these inverters provides the three-phase fundamental-harmonic current to the armature winding, whereas the second inverter injects the single-phase high-harmonic i.e., 6 th harmonic current in this case, to the neutral-point of the Y-connected armature winding. The injection of the high-harmonic current in the armature winding develops the high-harmonic magnetomotive force (MMF) in the air gap of the machine beside the fundamental. The high-harmonic MMF induces the harmonic current in the excitation winding of the rotor, whereas the fundamental MMF develops the main armature field. The harmonic current is rectified to inject the direct current (DC) into the main rotor field winding. The main armature and rotor fields, when interacting with each other, produce torque. Finite element analysis (FEA) is carried out in order to develop a 4-pole 24-slot machine and investigate it using a 6 th harmonic current injection for the rotor field excitation to both attain a brushless operation and analyze its electromagnetic performance. Later on, the performance of the proposed topology is compared with the typical brushless WFSM topology employing the 3 rd harmonic current injection-based field excitation scheme.

Suggested Citation

  • Syed Sabir Hussain Bukhari & Fareed Hussain Mangi & Irfan Sami & Qasim Ali & Jong-Suk Ro, 2021. "High-Harmonic Injection-Based Brushless Wound Field Synchronous Machine Topology," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1721-:d:598960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syed Sabir Hussain Bukhari & Ghulam Jawad Sirewal & Faheem Akhtar Chachar & Jong-Suk Ro, 2020. "Dual-Inverter-Controlled Brushless Operation of Wound Rotor Synchronous Machines Based on an Open-Winding Pattern," Energies, MDPI, vol. 13(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Sabir Hussain Bukhari & Qasim Ali & Jesús Doval-Gandoy & Jong-Suk Ro, 2021. "High-Efficient Brushless Wound Rotor Synchronous Machine Topology Based on Sub-Harmonic Field-Excitation Technique," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Muhammad Humza & Tanveer Yazdan & Qasim Ali & Han-Wook Cho, 2023. "Brushless Operation of Wound-Rotor Synchronous Machine Based on Sub-Harmonic Excitation Technique Using Multi-Pole Stator Windings," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1721-:d:598960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.