IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1483-d581270.html
   My bibliography  Save this article

Krylov SSP Integrating Factor Runge–Kutta WENO Methods

Author

Listed:
  • Shanqin Chen

    (Department of Mathematical Sciences, Indiana University South Bend, South Bend, IN 46615, USA)

Abstract

Weighted essentially non-oscillatory (WENO) methods are especially efficient for numerically solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps, strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature, but the methods there were only for one-dimensional (1D) problems that have a stiff linear component and a non-stiff nonlinear component. In this paper, we extend WENO methods with large time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on high spatial dimensions. In this work, the matrix exponential computation is approximated through the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy and large time-step size of the present method.

Suggested Citation

  • Shanqin Chen, 2021. "Krylov SSP Integrating Factor Runge–Kutta WENO Methods," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1483-:d:581270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1483/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1483-:d:581270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.