IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1466-d580023.html
   My bibliography  Save this article

A Constrained Markovian Diffusion Model for Controlling the Pollution Accumulation

Author

Listed:
  • Beatris Adriana Escobedo-Trujillo

    (Facultad de Ingeniería, Universidad Veracruzana, Xalapa de Enriquez 91090, Mexico
    These authors contributed equally to this work.)

  • José Daniel López-Barrientos

    (Facultad de Ciencias Actuariales, Universidad Anáhuac México, Naucalpan de Juárez 52786, Mexico
    These authors contributed equally to this work.)

  • Javier Garrido-Meléndez

    (Facultad de Ingeniería, Universidad Veracruzana, Xalapa de Enriquez 91090, Mexico)

Abstract

This work presents a study of a finite-time horizon stochastic control problem with restrictions on both the reward and the cost functions. To this end, it uses standard dynamic programming techniques, and an extension of the classic Lagrange multipliers approach. The coefficients considered here are supposed to be unbounded, and the obtained strategies are of non-stationary closed-loop type. The driving thread of the paper is a sequence of examples on a pollution accumulation model, which is used for the purpose of showing three algorithms for the purpose of replicating the results. There, the reader can find a result on the interchangeability of limits in a Dirichlet problem.

Suggested Citation

  • Beatris Adriana Escobedo-Trujillo & José Daniel López-Barrientos & Javier Garrido-Meléndez, 2021. "A Constrained Markovian Diffusion Model for Controlling the Pollution Accumulation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1466-:d:580023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kawaguchi, Kazuhito & Morimoto, Hiroaki, 2007. "Long-run average welfare in a pollution accumulation model," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 703-720, February.
    2. Broadie, Mark & Cvitanic, Jaksa & Soner, H Mete, 1998. "Optimal Replication of Contingent Claims under Portfolio Constraints," The Review of Financial Studies, Society for Financial Studies, vol. 11(1), pages 59-79.
    3. Morimoto,Hiroaki, 2010. "Stochastic Control and Mathematical Modeling," Cambridge Books, Cambridge University Press, number 9780521195034, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatris Adriana Escobedo-Trujillo & José Daniel López-Barrientos & Carmen Geraldi Higuera-Chan & Francisco Alejandro Alaffita-Hernández, 2023. "Robust Statistic Estimation in Constrained Optimal Control Problems of Pollution Accumulation (Part II: Markovian Switchings)," Mathematics, MDPI, vol. 11(4), pages 1-22, February.
    2. Beatris Adriana Escobedo-Trujillo & José Daniel López-Barrientos & Carmen Geraldi Higuera-Chan & Francisco Alejandro Alaffita-Hernández, 2023. "Robust Statistic Estimation of Constrained Optimal Control Problems of Pollution Accumulation (Part I)," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatris Adriana Escobedo-Trujillo & José Daniel López-Barrientos & Carmen Geraldi Higuera-Chan & Francisco Alejandro Alaffita-Hernández, 2023. "Robust Statistic Estimation of Constrained Optimal Control Problems of Pollution Accumulation (Part I)," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    2. Beatris Adriana Escobedo-Trujillo & José Daniel López-Barrientos & Carmen Geraldi Higuera-Chan & Francisco Alejandro Alaffita-Hernández, 2023. "Robust Statistic Estimation in Constrained Optimal Control Problems of Pollution Accumulation (Part II: Markovian Switchings)," Mathematics, MDPI, vol. 11(4), pages 1-22, February.
    3. Jean-François Chassagneux & Romuald Elie & Idris Kharroubi, 2015. "When terminal facelift enforces delta constraints," Finance and Stochastics, Springer, vol. 19(2), pages 329-362, April.
    4. Kasper Larsen & H. Mete Soner & Gordan Zitkovic, 2014. "Facelifting in Utility Maximization," Papers 1404.2227, arXiv.org.
    5. Hu, Yuan & Lindquist, W. Brent & Rachev, Svetlozar T. & Shirvani, Abootaleb & Fabozzi, Frank J., 2022. "Market complete option valuation using a Jarrow-Rudd pricing tree with skewness and kurtosis," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    6. Peter Bank & Selim Gokay, 2013. "Superreplication when trading at market indifference prices," Papers 1310.3113, arXiv.org.
    7. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    8. Aliprantis, Charalambos D. & Polyrakis, Yiannis A. & Tourky, Rabee, 2002. "The cheapest hedge," Journal of Mathematical Economics, Elsevier, vol. 37(4), pages 269-295, July.
    9. Beatris Adriana Escobedo-Trujillo & Javier Garrido-Meléndez & Gerardo Alcalá & J. D. Revuelta-Acosta, 2022. "Optimal Control with Partially Observed Regime Switching: Discounted and Average Payoffs," Mathematics, MDPI, vol. 10(12), pages 1-28, June.
    10. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    11. Ramachandran, Lakshmi Shankar & Tayal, Jitendra, 2021. "Mispricing, short-sale constraints, and the cross-section of option returns," Journal of Financial Economics, Elsevier, vol. 141(1), pages 297-321.
    12. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    13. José López-Barrientos & Héctor Jasso-Fuentes & Beatris Escobedo-Trujillo, 2015. "Discounted robust control for Markov diffusion processes," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 53-76, April.
    14. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    15. Bentahar, Imen & Bouchard, Bruno, 2006. "Barrier option hedging under constraints: A viscosity approach," SFB 649 Discussion Papers 2006-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Albeverio, Sergio & Mastrogiacomo, Elisa, 2022. "Large deviation principle for spatial economic growth model on networks," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    17. Aliprantis, Charalambos D. & Monteiro, Paulo K. & Tourky, Rabee, 2004. "Non-marketed options, non-existence of equilibria, and non-linear prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 345-357, February.
    18. Aliprantis, C. D. & Brown, D. J. & Werner, J., 2000. "Minimum-cost portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1703-1719, October.
    19. Peter Bank & Selim Gökay, 2016. "Superreplication when trading at market indifference prices," Finance and Stochastics, Springer, vol. 20(1), pages 153-182, January.
    20. Huang, Kevin X. D., 2002. "On infinite-horizon minimum-cost hedging under cone constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 283-301, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1466-:d:580023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.