IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1351-d573216.html
   My bibliography  Save this article

Interval Ranges of Fuzzy Sets Induced by Arithmetic Operations Using Gradual Numbers

Author

Listed:
  • Qingsong Mao

    (Teachers College, Jimei University, Xiamen 361021, China)

  • Huan Huang

    (Department of Mathematics, Jimei University, Xiamen 361021, China)

Abstract

Wu introduced the interval range of fuzzy sets. Based on this, he defined a kind of arithmetic of fuzzy sets using a gradual number and gradual sets. From the point of view of soft computing, this definition provides a new way of handling the arithmetic operations of fuzzy sets. The interval range is an important characterization of a fuzzy set. The interval range is also useful for analyses and applications of arithmetic. In this paper, we present general conclusions on crucial problems related to interval ranges of fuzzy sets induced by this arithmetic. These conclusions indicate that the corresponding conclusions in previous works should be modified: firstly, we give properties of the arithmetic and the composites of finite arithmetic. Then, we discuss the relationship between the domain of a gradual set and the range of its induced fuzzy set, and the relationship between the domain of a gradual set and the interval range of its induced fuzzy set. Based on the above results, we present the relationship between the intersection of the interval ranges of a group of fuzzy sets and the interval ranges of their resulting fuzzy sets obtained by compositions of finite arithmetic. Furthermore, we construct examples to show that even under conditions stronger than in previous work, there are still various possibilities in the relationship between the intersection of interval ranges of a group of fuzzy sets and the ranges of their resulted fuzzy sets, and there are still various possibilities in the relationship between the intersection of the interval ranges of a group of fuzzy sets and the interval ranges of their resulting fuzzy sets.

Suggested Citation

  • Qingsong Mao & Huan Huang, 2021. "Interval Ranges of Fuzzy Sets Induced by Arithmetic Operations Using Gradual Numbers," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1351-:d:573216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luciano Stefanini, 2008. "A generalization of Hukuhara difference for interval and fuzzy arithmetic," Working Papers 0801, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sorin Nădăban, 2022. "Fuzzy Logic and Soft Computing—Dedicated to the Centenary of the Birth of Lotfi A. Zadeh (1921–2017)," Mathematics, MDPI, vol. 10(17), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jules Sadefo Kamdem & Babel Raïssa Guemdjo Kamdem & Carlos Ougouyandjou, 2021. "S-ARMA Model and Wold Decomposition for Covariance Stationary Interval-Valued Time Series Processes," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 191-213, March.
    2. Saed Mallak & Doa’a Farekh & Basem Attili, 2021. "Numerical Investigation of Fuzzy Predator-Prey Model with a Functional Response of the Form Arctan ( ax )," Mathematics, MDPI, vol. 9(16), pages 1-22, August.
    3. Sadefo Kamdem, J. & Mbairadjim Moussa, A. & Terraza, M., 2012. "Fuzzy risk adjusted performance measures: Application to hedge funds," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 702-712.
    4. R. Sujatha & T. M. Rajalaxmi, 2016. "Hierarchical Fuzzy Hidden Markov Chain for Web Applications," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 83-118, January.
    5. Fanyong Meng & Xiaohong Chen & Chunqiao Tan, 2016. "Cooperative fuzzy games with interval characteristic functions," Operational Research, Springer, vol. 16(1), pages 1-24, April.
    6. Debdas Ghosh, 2016. "A Newton method for capturing efficient solutions of interval optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 648-665, September.
    7. Beatriz Hernández-Jiménez & Gabriel Ruiz-Garzón & Antonio Beato-Moreno & Rafaela Osuna-Gómez, 2021. "A Better Approach for Solving a Fuzzy Multiobjective Programming Problem by Level Sets," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    8. Sankar Prasad Mondal & Tapan Kumar Roy, 2017. "Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 766-798, December.
    9. Luciano Stefanini & Barnabas Bede, 2008. "Generalized Hukuhara Differentiability of Interval-valued Functions and Interval Differential Equations," Working Papers 0803, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2008.
    10. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    11. Majumder, Pinki & Mondal, Sankar Prasad & Bera, Uttam Kumar & Maiti, Manoranjan, 2016. "Application of Generalized Hukuhara derivative approach in an economic production quantity model with partial trade credit policy under fuzzy environment," Operations Research Perspectives, Elsevier, vol. 3(C), pages 77-91.
    12. Barnab?s Bede & Luciano Stefanini, 2012. "Generalized Differentiability of Fuzzy-valued Functions," Working Papers 1209, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2012.
    13. Regivan Santiago & Flaulles Bergamaschi & Humberto Bustince & Graçaliz Dimuro & Tiago Asmus & José Antonio Sanz, 2020. "On the Normalization of Interval Data," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    14. Luciano Stefanini & Barnab?s Bede, 2012. "Some notes on generalized Hukuhara differentiability of interval-valued functions and interval differential equations," Working Papers 1208, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2012.
    15. Luciano Stefanini & Barnab?s Bede, 2012. "Generalized Fuzzy Differentiability with LU-parametric Representation," Working Papers 1210, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2012.
    16. Zhang, Qinchunxue & Shu, Lan & Jiang, Bichuan, 2023. "Moran process in evolutionary game dynamics with interval payoffs and its application," Applied Mathematics and Computation, Elsevier, vol. 446(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1351-:d:573216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.