IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1568-d412252.html
   My bibliography  Save this article

Modelling of Alumina Splat Solidification on Preheated Steel Substrate Using the Network Simulation Method

Author

Listed:
  • Noelia González Morales

    (Department of Mechanical Engineering, Materials and Manufacturing, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Juan Francisco Sánchez-Pérez

    (Department of Applied Physics and Naval Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Jose Andres Moreno Nicolás

    (Department of Mechanical Engineering, Materials and Manufacturing, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Andreas Killinger

    (Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany)

Abstract

A mathematical model, consisting of a set of differential equations, for the simulation of the alumina splat solidification on steel substrate is presented. The network simulation method is used to solve the problem, which provides the temperatures and the cooling rate in the splat and substrate with a high temporal and spatial resolution for different values of the preheated substrate temperature. The results of this calculation provide important information for the design of ceramic coatings. The model design is explained in depth and simulated in open source software. As expected, the temperature evolutions in several points of the splat, an important variable to know the type of phases and the effect of the manufacturing parameters on this process, coincide with the experimental results. The model is also checked by another experimental test with tin and a bigger splat, which enables the temperature to be measured during solidification. It is worth highlighting the study of the cooling rate, a fundamental parameter to determine the phase, whether amorphous, gamma or alpha. Furthermore, a sensitive study of the mesh was included in order to optimize the computational time.

Suggested Citation

  • Noelia González Morales & Juan Francisco Sánchez-Pérez & Jose Andres Moreno Nicolás & Andreas Killinger, 2020. "Modelling of Alumina Splat Solidification on Preheated Steel Substrate Using the Network Simulation Method," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1568-:d:412252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1568/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalo García-Ros & Juan Francisco Sánchez-Pérez & Julio Valenzuela & Manuel Conesa & Manuel Cánovas, 2022. "A Network Model for Electroosmotic and Pressure-Driven Flow in Porous Microfluidic Channels," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    2. Juan Francisco Sánchez-Pérez & Guillermo Jorde-Cerezo & Adrián Fernández-Roiz & José Andrés Moreno-Nicolás, 2023. "Mathematical Modeling and Analysis Using Nondimensionalization Technique of the Solidification of a Splat of Variable Section," Mathematics, MDPI, vol. 11(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1568-:d:412252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.