IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1483-d407873.html
   My bibliography  Save this article

Efficient Methods for Parameter Estimation of Ordinary and Partial Differential Equation Models of Viral Hepatitis Kinetics

Author

Listed:
  • Alexander Churkin

    (Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410501, Israel)

  • Stephanie Lewkiewicz

    (Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095, USA)

  • Vladimir Reinharz

    (Department of Computer Science, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada)

  • Harel Dahari

    (Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Medical Center, Maywoood, IL 60153, USA)

  • Danny Barash

    (Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel)

Abstract

Parameter estimation in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation that addresses all cases of data points available presents a formidable challenge and efficiency considerations need to be employed in order for the method to become practical. In the case of age-structured models of viral hepatitis dynamics under antiviral treatment that deal with partial differential equations, a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derivative approximations. The newly efficient methods that were developed as a result of the above approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary and partial differential equation models.

Suggested Citation

  • Alexander Churkin & Stephanie Lewkiewicz & Vladimir Reinharz & Harel Dahari & Danny Barash, 2020. "Efficient Methods for Parameter Estimation of Ordinary and Partial Differential Equation Models of Viral Hepatitis Kinetics," Mathematics, MDPI, vol. 8(9), pages 1-30, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1483-:d:407873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Libin Rong & Jeremie Guedj & Harel Dahari & Daniel J Coffield Jr & Micha Levi & Patrick Smith & Alan S Perelson, 2013. "Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Churkin & Danny Barash, 2022. "Mathematical and Computational Biology of Viruses at the Molecular or Cellular Levels," Mathematics, MDPI, vol. 10(23), pages 1-4, November.
    2. Shoya Iwanami & Kosaku Kitagawa & Hirofumi Ohashi & Yusuke Asai & Kaho Shionoya & Wakana Saso & Kazane Nishioka & Hisashi Inaba & Shinji Nakaoka & Takaji Wakita & Odo Diekmann & Shingo Iwami & Koichi , 2020. "Should a viral genome stay in the host cell or leave? A quantitative dynamics study of how hepatitis C virus deals with this dilemma," PLOS Biology, Public Library of Science, vol. 18(7), pages 1-17, July.
    3. Markus M. Knodel & Paul Targett-Adams & Alfio Grillo & Eva Herrmann & Gabriel Wittum, 2019. "Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment," IJERPH, MDPI, vol. 16(3), pages 1-53, February.
    4. Vladimir Reinharz & Alexander Churkin & Harel Dahari & Danny Barash, 2022. "Advances in Parameter Estimation and Learning from Data for Mathematical Models of Hepatitis C Viral Kinetics," Mathematics, MDPI, vol. 10(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1483-:d:407873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.