IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1415-d403101.html
   My bibliography  Save this article

Elephant Herding Optimization: Variants, Hybrids, and Applications

Author

Listed:
  • Juan Li

    (School of Artificial Intelligence, Wuhan Technology and Business University, Wuhan 430065, China
    School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China
    Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China)

  • Hong Lei

    (School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China)

  • Amir H. Alavi

    (Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
    Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
    Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan)

  • Gai-Ge Wang

    (Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
    Institute of Algorithm and Big Data Analysis, Northeast Normal University, Changchun 130117, China
    School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China)

Abstract

Elephant herding optimization (EHO) is a nature-inspired metaheuristic optimization algorithm based on the herding behavior of elephants. EHO uses a clan operator to update the distance of the elephants in each clan with respect to the position of a matriarch elephant. The superiority of the EHO method to several state-of-the-art metaheuristic algorithms has been demonstrated for many benchmark problems and in various application areas. A comprehensive review for the EHO-based algorithms and their applications are presented in this paper. Various aspects of the EHO variants for continuous optimization, combinatorial optimization, constrained optimization, and multi-objective optimization are reviewed. Future directions for research in the area of EHO are further discussed.

Suggested Citation

  • Juan Li & Hong Lei & Amir H. Alavi & Gai-Ge Wang, 2020. "Elephant Herding Optimization: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1415-:d:403101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1415/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abdel-Basset & Reda Mohamed & Karam M. Sallam & Ripon K. Chakrabortty, 2022. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-63, September.
    2. Meshari Alsharari & Ammar Armghan & Khaled Aliqab, 2023. "Numerical Analysis and Parametric Optimization of T-Shaped Symmetrical Metasurface with Broad Bandwidth for Solar Absorber Application Based on Graphene Material," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    3. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    4. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    5. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1415-:d:403101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.