IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1340-d397402.html
   My bibliography  Save this article

Decentralized Adaptive Tracking of Interconnected Nonlinear Systems by Corrupted Output Feedback

Author

Listed:
  • Dong Min Jeong

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

  • Sung Jin Yoo

    (School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Korea)

Abstract

A decentralized adaptive resilient output-feedback stabilization strategy is presented for a class of uncertain interconnected nonlinear systems with unknown time-varying measurement sensitivities. In the concerned problem, the main difficulty is to achieve the decentralization of interconnected output nonlinearities unmatched to the control input by using only local output information corrupted by measurement sensitivity, namely the exact output information cannot be used to design the decentralized output-feedback control scheme. Thus, a decentralized output-feedback stabilizer design using only the corrupted output of each subsystem is developed where the adaptive control technique is employed to compensate for the effects of unknown measurement sensitivities. The stability of the resulting decentralized control scheme is analyzed based on the Lyapunov stability theorem.

Suggested Citation

  • Dong Min Jeong & Sung Jin Yoo, 2020. "Decentralized Adaptive Tracking of Interconnected Nonlinear Systems by Corrupted Output Feedback," Mathematics, MDPI, vol. 8(8), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1340-:d:397402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. S. Wu, 2005. "Decentralized Adaptive Robust State Feedback for Uncertain Large-Scale Interconnected Systems with Time Delays," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 439-462, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoo, Sung Jin, 2021. "Decentralized event-triggered adaptive control of a class of uncertain interconnected nonlinear systems using local state feedback corrupted by unknown injection data," Applied Mathematics and Computation, Elsevier, vol. 399(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1340-:d:397402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.