IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1186-d386713.html
   My bibliography  Save this article

On Generalized Fourier’s and Fick’s Laws in Bio-Convection Flow of Magnetized Burgers’ Nanofluid Utilizing Motile Microorganisms

Author

Listed:
  • Ali Saleh Alshomrani

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

This article describes the features of bio-convection and motile microorganisms in magnetized Burgers’ nanoliquid flows by stretchable sheet. Theory of Cattaneo–Christov mass and heat diffusions is also discussed. The Buongiorno phenomenon for nanoliquid motion in a Burgers’ fluid is employed in view of the Cattaneo–Christov relation. The control structure of governing partial differential equations (PDEs) is changed into appropriate ordinary differential equations (ODEs) by suitable transformations. To get numerical results of nonlinear systems, the bvp4c solver provided in the commercial software MATLAB is employed. Numerical and graphical data for velocity, temperature, nanoparticles concentration and microorganism profiles are obtained by considering various estimations of prominent physical parameters. Our computations depict that the temperature field has direct relation with the thermal Biot number and Burgers’ fluid parameter. Here, temperature field is enhanced for growing estimations of thermal Biot number and Burgers’ fluid parameter.

Suggested Citation

  • Ali Saleh Alshomrani, 2020. "On Generalized Fourier’s and Fick’s Laws in Bio-Convection Flow of Magnetized Burgers’ Nanofluid Utilizing Motile Microorganisms," Mathematics, MDPI, vol. 8(7), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1186-:d:386713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1186-:d:386713. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.