Author
Listed:
- Burkhard Schaffrin
(Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA)
Abstract
In regression analysis, oftentimes a linear (or linearized) Gauss-Markov Model (GMM) is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there are more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as ‘Least-Squares adjustment’, for instance, which turns out to be optimal under a wide range of criteria. In this context, the matrix connecting the parameters with the observations is considered fully known, and the parameter vector is considered fully unknown. This, however, is not always the reality. Therefore, two modifications of the GMM have been considered, in particular. First, ‘stochastic prior information’ (p. i.) was added on the parameters, thereby creating the – still linear – Random Effects Model (REM) where the optimal determination of the parameters (random effects) is based on ‘Least Squares collocation’, showing higher precision as long as the p. i. was adequate (Wallace test). Secondly, the coefficient matrix was allowed to contain observed elements, thus leading to the – now nonlinear – Errors-In-Variables (EIV) Model. If not using iterative linearization, the optimal estimates for the parameters would be obtained by ‘Total Least Squares adjustment’ and with generally lower, but perhaps more realistic precision. Here the two concepts are combined, thus leading to the (nonlinear) ’EIV-Model with p. i.’, where an optimal estimation (resp. prediction) technique is developed under the name of ‘Total Least-Squares collocation’. At this stage, however, the covariance matrix of the data matrix – in vector form – is still being assumed to show a Kronecker product structure.
Suggested Citation
Burkhard Schaffrin, 2020.
"Total Least-Squares Collocation: An Optimal Estimation Technique for the EIV-Model with Prior Information,"
Mathematics, MDPI, vol. 8(6), pages 1-9, June.
Handle:
RePEc:gam:jmathe:v:8:y:2020:i:6:p:971-:d:370984
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:971-:d:370984. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.