IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1026-d375131.html
   My bibliography  Save this article

Solvability of a Bounded Parametric System in Max-Łukasiewicz Algebra

Author

Listed:
  • Martin Gavalec

    (Faculty of Informatics and Management, University of Hradec Králové, 50003 Hradec Králové, Czech Republic)

  • Zuzana Němcová

    (Faculty of Informatics and Management, University of Hradec Králové, 50003 Hradec Králové, Czech Republic)

Abstract

The max-Łukasiewicz algebra describes fuzzy systems working in discrete time which are based on two binary operations: the maximum and the Łukasiewicz triangular norm. The behavior of such a system in time depends on the solvability of the corresponding bounded parametric max-linear system. The aim of this study is to describe an algorithm recognizing for which values of the parameter the given bounded parametric max-linear system has a solution—represented by an appropriate state of the fuzzy system in consideration. Necessary and sufficient conditions of the solvability have been found and a polynomial recognition algorithm has been described. The correctness of the algorithm has been verified. The presented polynomial algorithm consists of three parts depending on the entries of the transition matrix and the required state vector. The results are illustrated by numerical examples. The presented results can be also applied in the study of the max-Łukasiewicz systems with interval coefficients. Furthermore, Łukasiewicz arithmetical conjunction can be used in various types of models, for example, in cash-flow system.

Suggested Citation

  • Martin Gavalec & Zuzana Němcová, 2020. "Solvability of a Bounded Parametric System in Max-Łukasiewicz Algebra," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1026-:d:375131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1026/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1026-:d:375131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.