IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p615-d346513.html
   My bibliography  Save this article

A New Accelerated Viscosity Iterative Method for an Infinite Family of Nonexpansive Mappings with Applications to Image Restoration Problems

Author

Listed:
  • Jenwit Puangpee

    (PhD Degree Program in Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Suthep Suantai

    (Data Science Research Center, Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

The image restoration problem is one of the popular topics in image processing which is extensively studied by many authors because of its applications in various areas of science, engineering and medical image. The main aim of this paper is to introduce a new accelerated fixed algorithm using viscosity approximation technique with inertial effect for finding a common fixed point of an infinite family of nonexpansive mappings in a Hilbert space and prove a strong convergence result of the proposed method under some suitable control conditions. As an application, we apply our algorithm to solving image restoration problem and compare the efficiency of our algorithm with FISTA method which is a popular algorithm for image restoration. By numerical experiments, it is shown that our algorithm has more efficiency than that of FISTA.

Suggested Citation

  • Jenwit Puangpee & Suthep Suantai, 2020. "A New Accelerated Viscosity Iterative Method for an Infinite Family of Nonexpansive Mappings with Applications to Image Restoration Problems," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:615-:d:346513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genaro López & Victoria Martín-Márquez & Fenghui Wang & Hong-Kun Xu, 2012. "Forward-Backward Splitting Methods for Accretive Operators in Banach Spaces," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piti Thongsri & Bancha Panyanak & Suthep Suantai, 2023. "A New Accelerated Algorithm Based on Fixed Point Method for Convex Bilevel Optimization Problems with Applications," Mathematics, MDPI, vol. 11(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    2. Lu-Chuan Ceng & Meijuan Shang, 2019. "Generalized Mann Viscosity Implicit Rules for Solving Systems of Variational Inequalities with Constraints of Variational Inclusions and Fixed Point Problems," Mathematics, MDPI, vol. 7(10), pages 1-18, October.
    3. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    4. Prasit Cholamjiak & Suparat Kesornprom & Nattawut Pholasa, 2019. "Weak and Strong Convergence Theorems for the Inclusion Problem and the Fixed-Point Problem of Nonexpansive Mappings," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    5. Cholamjiak, Watcharaporn & Dutta, Hemen, 2022. "Viscosity modification with parallel inertial two steps forward-backward splitting methods for inclusion problems applied to signal recovery," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Yanlai Song & Mihai Postolache, 2021. "Modified Inertial Forward–Backward Algorithm in Banach Spaces and Its Application," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    7. Shamshad Husain & Mohammed Ahmed Osman Tom & Mubashshir U. Khairoowala & Mohd Furkan & Faizan Ahmad Khan, 2022. "Inertial Tseng Method for Solving the Variational Inequality Problem and Monotone Inclusion Problem in Real Hilbert Space," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    8. Li Wei & Yingzi Shang & Ravi P. Agarwal, 2019. "New Inertial Forward-Backward Mid-Point Methods for Sum of Infinitely Many Accretive Mappings, Variational Inequalities, and Applications," Mathematics, MDPI, vol. 7(5), pages 1-19, May.
    9. Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
    10. Peeyada, Pronpat & Suparatulatorn, Raweerote & Cholamjiak, Watcharaporn, 2022. "An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Adamu, A. & Kitkuan, D. & Padcharoen, A. & Chidume, C.E. & Kumam, P., 2022. "Inertial viscosity-type iterative method for solving inclusion problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 445-459.
    12. Yekini Shehu & Aviv Gibali, 2020. "Inertial Krasnoselskii–Mann Method in Banach Spaces," Mathematics, MDPI, vol. 8(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:615-:d:346513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.