IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p599-d345830.html
   My bibliography  Save this article

The Fixed Point Property of the Infinite M -Sphere

Author

Listed:
  • Sang-Eon Han

    (Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju-City Jeonbuk 54896, Korea)

  • Selma Özçağ

    (Department of Mathematics, Hacettepe University, 06800 Ankara, Turkey)

Abstract

The present paper is concerned with the Alexandroff one point compactification of the Marcus-Wyse ( M -, for brevity) topological space ( Z 2 , γ ) . This compactification is called the infinite M -topological sphere and denoted by ( ( Z 2 ) ∗ , γ ∗ ) , where ( Z 2 ) ∗ : = Z 2 ∪ { ∗ } , ∗ ∉ Z 2 and γ ∗ is the topology for ( Z 2 ) ∗ induced by the topology γ on Z 2 . With the topological space ( ( Z 2 ) ∗ , γ ∗ ) , since any open set containing the point “ ∗ ” has the cardinality ℵ 0 , we call ( ( Z 2 ) ∗ , γ ∗ ) the infinite M -topological sphere. Indeed, in the fields of digital or computational topology or applied analysis, there is an unsolved problem as follows: Under what category does ( ( Z 2 ) ∗ , γ ∗ ) have the fixed point property ( FPP , for short)? The present paper proves that ( ( Z 2 ) ∗ , γ ∗ ) has the FPP in the category M o p ( γ ∗ ) whose object is the only ( ( Z 2 ) ∗ , γ ∗ ) and morphisms are all continuous self-maps g of ( ( Z 2 ) ∗ , γ ∗ ) such that | g ( ( Z 2 ) ∗ ) | = ℵ 0 with ∗ ∈ g ( ( Z 2 ) ∗ ) or g ( ( Z 2 ) ∗ ) is a singleton. Since ( ( Z 2 ) ∗ , γ ∗ ) can be a model for a digital sphere derived from the M -topological space ( Z 2 , γ ) , it can play a crucial role in topology, digital geometry and applied sciences.

Suggested Citation

  • Sang-Eon Han & Selma Özçağ, 2020. "The Fixed Point Property of the Infinite M -Sphere," Mathematics, MDPI, vol. 8(4), pages 1-11, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:599-:d:345830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeong Min Kang & Sang-Eon Han & Sik Lee, 2019. "The Fixed Point Property of Non-Retractable Topological Spaces," Mathematics, MDPI, vol. 7(10), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang-Eon Han, 2020. "Digital k -Contractibility of an n -Times Iterated Connected Sum of Simple Closed k -Surfaces and Almost Fixed Point Property," Mathematics, MDPI, vol. 8(3), pages 1-23, March.
    2. Sang-Eon Han & Saeid Jafari & Jeong Min Kang, 2019. "Topologies on Z n that Are Not Homeomorphic to the n -Dimensional Khalimsky Topological Space," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    3. Sang-Eon Han, 2019. "Links between Contractibility and Fixed Point Property for Khalimsky Topological Spaces," Mathematics, MDPI, vol. 8(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:599-:d:345830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.