IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p575-d344870.html
   My bibliography  Save this article

Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach

Author

Listed:
  • Jose R. Huerta-Rosales

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico)

  • David Granados-Lieberman

    (ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato (ITESI), Carr. Irapuato-Silao km 12.5, Colonia El Copal, Irapuato, Guanajuato C. P. 36821, Mexico)

  • Juan P. Amezquita-Sanchez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico)

  • David Camarena-Martinez

    (ENAP-Research Group, CA Procesamiento Digital de Señales, Departamento de Electrónica, División de Ingenierías Campus Irapuato-Salamanca (DICIS), Salamanca, Guanajuato C. P. 36885, Mexico)

  • Martin Valtierra-Rodriguez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C. P. 76807, Mexico)

Abstract

Transformers are vital and indispensable elements in electrical systems, and therefore, their correct operation is fundamental; despite being robust electrical machines, they are susceptible to present different types of faults during their service life. Although there are different faults, the fault of short-circuited turns (SCTs) has attracted the interest of many researchers around the world since the windings in a transformer are one of the most vulnerable parts. In this regard, several works in literature have analyzed the vibration signals that generate a transformer as a source of information to carry out fault diagnosis; however this analysis is not an easy task since the information associated with the fault is embedded in high level noise. This problem becomes more difficult when low levels of fault severity are considered. In this work, as the main contribution, the nonlinear mode decomposition (NMD) method is investigated as a potential signal processing technique to extract features from vibration signals, and thus, detect SCTs in transformers, even in early stages, i.e., low levels of fault severity. Also, the instantaneous root mean square (RMS) value computed using the Hilbert transform is proposed as a fault indicator, demonstrating to be sensitive to fault severity. Finally, a fuzzy logic system is developed for automatic fault diagnosis. To test the proposal, a modified transformer representing diverse levels of SCTs is used. These levels consist of 0 (healthy condition), 5, 10, 15, 20, and 25 SCTs. Results demonstrate the capability of the proposal to extract features from vibration signals and perform automatic fault diagnosis.

Suggested Citation

  • Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & David Camarena-Martinez & Martin Valtierra-Rodriguez, 2020. "Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach," Mathematics, MDPI, vol. 8(4), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:575-:d:344870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Valtierra-Rodriguez & Juan Pablo Amezquita-Sanchez & Arturo Garcia-Perez & David Camarena-Martinez, 2019. "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyue Liu & Yan Yan & Kaibo Hu & Shan Zhang & Hongjie Li & Zhen Zhang & Tingna Shi, 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition," Energies, MDPI, vol. 15(3), pages 1-16, February.
    2. Haoran Zhao & Sen Guo, 2023. "Carbon Trading Price Prediction of Three Carbon Trading Markets in China Based on a Hybrid Model Combining CEEMDAN, SE, ISSA, and MKELM," Mathematics, MDPI, vol. 11(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:575-:d:344870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.