IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p562-d344266.html
   My bibliography  Save this article

Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current

Author

Listed:
  • Mathieu Morvan

    (Laboratoire d’Océanographie Physique et Spatiale, UMR 6523 Univ. Brest-CNRS-IFREMER-IRD, Institut Universitaire Européen de la Mer, rue Dumont d’Urville, 29280 Plouzané, France
    Current address: Institut Universitaire Européen de la Mer, rue Dumont d’Urville, 29280 Plouzané, France.)

  • Xavier Carton

    (Laboratoire d’Océanographie Physique et Spatiale, UMR 6523 Univ. Brest-CNRS-IFREMER-IRD, Institut Universitaire Européen de la Mer, rue Dumont d’Urville, 29280 Plouzané, France
    Current address: Institut Universitaire Européen de la Mer, rue Dumont d’Urville, 29280 Plouzané, France.)

Abstract

The Omani Coastal Current (OCC) flowing northward along the southern coast of Oman during the summer monsoon is associated with an upwelling system. The mesoscale circulation of the western Arabian Sea is dominated by energetic mesoscale eddies down to about 1000 m depth. They drive the pathways of the upwelling water masses and the Persian Gulf Outflow water. This paper focuses on the sub-mesoscale frontal dynamics in the OCC by analyzing the results from a regional realistic numerical simulation performed with a primitive equation model. Off the Omani coast, the interaction between the upwelling fronts and the mesoscale eddies triggers the frontogenesis at play in the surface mixed layer during the summer monsoon. In spring, sub-mesoscale eddies are generated at the Cape of Ra’s al Hadd due to the horizontal shear instabilities undergone by the OCC. The OCC also drives and elongates Peddies formed during the Summer monsoon and located below the thermocline. Finally, the interaction between mesoscale eddies and the upwelling system leads to the formation of sub-mesoscale eddies at depth through baroclinic instabilities.

Suggested Citation

  • Mathieu Morvan & Xavier Carton, 2020. "Sub-Mesoscale Frontal Instabilities in the Omani Coastal Current," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:562-:d:344266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Gula & M. Jeroen Molemaker & James C. McWilliams, 2016. "Topographic generation of submesoscale centrifugal instability and energy dissipation," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bracco, Annalisa & Liu, Guangpeng & Sun, Daoxun, 2019. "Mesoscale-submesoscale interactions in the Gulf of Mexico: From oil dispersion to climate," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 63-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:562-:d:344266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.