IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p491-d340087.html
   My bibliography  Save this article

On Coefficient Functionals for Functions with Coefficients Bounded by 1

Author

Listed:
  • Paweł Zaprawa

    (Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Anna Futa

    (Institute of Mathematics, Maria Curie-Skodowska University, pl. Marii Curie-Skodowskiej 1, 20-031 Lublin, Poland)

  • Magdalena Jastrzębska

    (Department of Applied Mathematics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland)

Abstract

In this paper, we discuss two well-known coefficient functionals a 2 a 4 − a 3 2 and a 4 − a 2 a 3 . The first one is called the Hankel determinant of order 2. The second one is a special case of Zalcman functional. We consider them for functions in the class Q R ( 1 2 ) of analytic functions with real coefficients which satisfy the condition Re f ( z ) z > 1 2 for z in the unit disk Δ . It is known that all coefficients of f ∈ Q R ( 1 2 ) are bounded by 1. We find the upper bound of a 2 a 4 − a 3 2 and the bound of | a 4 − a 2 a 3 | . We also consider a few subclasses of Q R ( 1 2 ) and we estimate the above mentioned functionals. In our research two different methods are applied. The first method connects the coefficients of a function in a given class with coefficients of a corresponding Schwarz function or a function with positive real part. The second method is based on the theorem of formulated by Szapiel. According to this theorem, we can point out the extremal functions in this problem, that is, functions for which equalities in the estimates hold. The obtained estimates significantly extend the results previously established for the discussed classes. They allow to compare the behavior of the coefficient functionals considered in the case of real coefficients and arbitrary coefficients.

Suggested Citation

  • Paweł Zaprawa & Anna Futa & Magdalena Jastrzębska, 2020. "On Coefficient Functionals for Functions with Coefficients Bounded by 1," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:491-:d:340087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oh Sang Kwon & Young Jae Sim, 2019. "The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions with Real Coefficients," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    2. Paweł Zaprawa, 2016. "Second Hankel Determinants for the Class of Typically Real Functions," Abstract and Applied Analysis, Hindawi, vol. 2016, pages 1-7, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Guo & Huo Tang & Zongtao Li & Qingbing Xu & En Ao, 2023. "Coefficient Problems for a Class of Univalent Functions," Mathematics, MDPI, vol. 11(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsan Raza & Hari Mohan Srivastava & Qin Xin & Fairouz Tchier & Sarfraz Nawaz Malik & Muhammad Arif, 2023. "Starlikeness Associated with the Van Der Pol Numbers," Mathematics, MDPI, vol. 11(10), pages 1-22, May.
    2. Isra Al-Shbeil & Muhammad Imran Faisal & Muhammad Arif & Muhammad Abbas & Reem K. Alhefthi, 2023. "Investigation of the Hankel Determinant Sharp Bounds for a Specific Analytic Function Linked to a Cardioid-Shaped Domain," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    3. Dorina Răducanu, 2020. "Coefficient Estimates for a Subclass of Starlike Functions," Mathematics, MDPI, vol. 8(10), pages 1-8, September.
    4. Yue-Juan Sun & Muhammad Arif & Lei Shi & Muhammad Imran Faisal, 2023. "Some Further Coefficient Bounds on a New Subclass of Analytic Functions," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    5. Lei Shi & Hari M. Srivastava & Ayesha Rafiq & Muhammad Arif & Muhammad Ihsan, 2022. "Results on Hankel Determinants for the Inverse of Certain Analytic Functions Subordinated to the Exponential Function," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    6. Lei Shi & Muhammad Arif & Ayesha Rafiq & Muhammad Abbas & Javed Iqbal, 2022. "Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions of Bounded Turning Associated with Petal-Shaped Domain," Mathematics, MDPI, vol. 10(11), pages 1-19, June.
    7. Dong Guo & Huo Tang & Zongtao Li & Qingbing Xu & En Ao, 2023. "Coefficient Problems for a Class of Univalent Functions," Mathematics, MDPI, vol. 11(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:491-:d:340087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.