IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p416-d332423.html
   My bibliography  Save this article

Finite Element Validation of an Energy Attenuator for the Design of a Formula Student Car

Author

Listed:
  • José A. López-Campos

    (Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluídos, Escola de Enxeñaría Industrial, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

  • Jacobo Baldonedo

    (Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluídos, Escola de Enxeñaría Industrial, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

  • Sofía Suárez

    (Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluídos, Escola de Enxeñaría Industrial, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

  • Abraham Segade

    (Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluídos, Escola de Enxeñaría Industrial, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

  • Enrique Casarejos

    (Departamento de Ingeniería Mecánica, Máquinas y Motores Térmicos y Fluídos, Escola de Enxeñaría Industrial, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

  • José R. Fernández

    (Departamento de Matemática Aplicada I, Universidade de Vigo, ETSI Telecomunicación, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain)

Abstract

Passive safety systems of cars include parts on the structure that, in the event of an impact, can absorb a large amount of the kinetic energy by deforming and crushing in a design-controlled way. One such energy absorber part, located in the front structure of a Formula Student car, was measured under impact in a test bench. The test is modeled within the Finite Element (FE) framework including the weld characteristics and weld failure description. The continuous welding feature is almost always disregarded in parts included in impact test models. In this work, the FE model is fully defined to reproduce the observed results. The test is used for the qualitative and quantitative validation of the crushing model. On the one hand, the acceleration against time curve is reproduced, and on the other hand, the plying shapes and welding failure observed in the test are also correctly described. Finally, a model that includes additional elements of the car structure is also simulated to verify that the energy absorption system is adequate according to the safety regulations.

Suggested Citation

  • José A. López-Campos & Jacobo Baldonedo & Sofía Suárez & Abraham Segade & Enrique Casarejos & José R. Fernández, 2020. "Finite Element Validation of an Energy Attenuator for the Design of a Formula Student Car," Mathematics, MDPI, vol. 8(3), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:416-:d:332423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/416/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:416-:d:332423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.