IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i3p378-d329953.html
   My bibliography  Save this article

A Fast Image Restoration Algorithm Based on a Fixed Point and Optimization Method

Author

Listed:
  • Adisak Hanjing

    (Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Suthep Suantai

    (Data Science Research Center, Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

In this paper, a new accelerated fixed point algorithm for solving a common fixed point of a family of nonexpansive operators is introduced and studied, and then a weak convergence result and the convergence behavior of the proposed method is proven and discussed. Using our main result, we obtain a new accelerated image restoration algorithm, called the forward-backward modified W-algorithm (FBMWA), for solving a minimization problem in the form of the sum of two proper lower semi-continuous and convex functions. As applications, we apply the FBMWA algorithm to solving image restoration problems. We analyze and compare convergence behavior of our method with the others for deblurring the image. We found that our algorithm has a higher efficiency than the others in the literature.

Suggested Citation

  • Adisak Hanjing & Suthep Suantai, 2020. "A Fast Image Restoration Algorithm Based on a Fixed Point and Optimization Method," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:378-:d:329953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/3/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/3/378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    2. Suthep Suantai & Nontawat Eiamniran & Nattawut Pholasa & Prasit Cholamjiak, 2019. "Three-Step Projective Methods for Solving the Split Feasibility Problems," Mathematics, MDPI, vol. 7(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panadda Thongpaen & Rattanakorn Wattanataweekul, 2021. "A Fast Fixed-Point Algorithm for Convex Minimization Problems and Its Application in Image Restoration Problems," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    2. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    3. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2021. "A Projected Forward-Backward Algorithm for Constrained Minimization with Applications to Image Inpainting," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    4. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2022. "An Accelerated Convex Optimization Algorithm with Line Search and Applications in Machine Learning," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    5. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    6. Suthep Suantai & Suparat Kesornprom & Watcharaporn Cholamjiak & Prasit Cholamjiak, 2022. "Modified Projection Method with Inertial Technique and Hybrid Stepsize for the Split Feasibility Problem," Mathematics, MDPI, vol. 10(6), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panadda Thongpaen & Rattanakorn Wattanataweekul, 2021. "A Fast Fixed-Point Algorithm for Convex Minimization Problems and Its Application in Image Restoration Problems," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    2. Kobkoon Janngam & Suthep Suantai, 2022. "An Inertial Modified S-Algorithm for Convex Minimization Problems with Directed Graphs and Its Applications in Classification Problems," Mathematics, MDPI, vol. 10(23), pages 1-15, November.
    3. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:378-:d:329953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.