IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p45-d304177.html
   My bibliography  Save this article

An Approximation Theorem for Vector Equilibrium Problems under Bounded Rationality

Author

Listed:
  • Wensheng Jia

    (School of Mathematics and Statistics, Guizhou University, Huaxidadao, Guiyang 550025, China)

  • Xiaoling Qiu

    (School of Mathematics and Statistics, Guizhou University, Huaxidadao, Guiyang 550025, China)

  • Dingtao Peng

    (School of Mathematics and Statistics, Guizhou University, Huaxidadao, Guiyang 550025, China)

Abstract

In this paper, our purpose is to investigate the vector equilibrium problem of whether the approximate solution representing bounded rationality can converge to the exact solution representing complete rationality. An approximation theorem is proved for vector equilibrium problems under some general assumptions. It is also shown that the bounded rationality is an approximate way to achieve the full rationality. As a special case, we obtain some corollaries for scalar equilibrium problems. Moreover, we obtain a generic convergence theorem of the solutions of strictly-quasi-monotone vector equilibrium problems according to Baire’s theorems. As applications, we investigate vector variational inequality problems, vector optimization problems and Nash equilibrium problems of multi-objective games as special cases.

Suggested Citation

  • Wensheng Jia & Xiaoling Qiu & Dingtao Peng, 2020. "An Approximation Theorem for Vector Equilibrium Problems under Bounded Rationality," Mathematics, MDPI, vol. 8(1), pages 1-9, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:45-:d:304177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    2. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    3. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    5. Q. Ansari & W. Oettli & D. Schläger, 1997. "A generalization of vectorial equilibria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 147-152, June.
    6. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    8. Li, S.J. & Li, X.B. & Wang, L.N. & Teo, K.L., 2009. "The Hölder continuity of solutions to generalized vector equilibrium problems," European Journal of Operational Research, Elsevier, vol. 199(2), pages 334-338, December.
    9. Morgan, Jacqueline & Scalzo, Vincenzo, 2007. "Pseudocontinuous functions and existence of Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 174-183, February.
    10. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    11. Q.H. Ansari & I.V. Konnov & J.C. Yao, 2002. "Characterizations of Solutions for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 435-447, June.
    12. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    13. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    14. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    15. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Sáenz-Royo & Francisco Chiclana & Enrique Herrera-Viedma, 2022. "Functional Representation of the Intentional Bounded Rationality of Decision-Makers: A Laboratory to Study the Decisions a Priori," Mathematics, MDPI, vol. 10(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
    2. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    3. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    4. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    5. Szilárd László, 2016. "Vector Equilibrium Problems on Dense Sets," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 437-457, August.
    6. J. Y. Fu & S. H. Wang & Z. D. Huang, 2007. "New Type of Generalized Vector Quasiequilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 643-652, December.
    7. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    8. Fabián Flores-Bazán & Elvira Hernández, 2013. "Optimality conditions for a unified vector optimization problem with not necessarily preordering relations," Journal of Global Optimization, Springer, vol. 56(2), pages 299-315, June.
    9. Li, S.J. & Chen, C.R. & Wu, S.Y., 2009. "Conjugate dual problems in constrained set-valued optimization and applications," European Journal of Operational Research, Elsevier, vol. 196(1), pages 21-32, July.
    10. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    11. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    12. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    13. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    14. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    15. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    16. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    17. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    18. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    19. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    20. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:45-:d:304177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.