IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2247-d465144.html
   My bibliography  Save this article

Numerical Analysis for the Fractional Ambartsumian Equation via the Homotopy Herturbation Method

Author

Listed:
  • Weam Alharbi

    (Department of Mathematics, Faculty of Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia)

  • Sergei Petrovskii

    (Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK)

Abstract

The fractional calculus is useful in describing the natural phenomena with memory effect. This paper addresses the fractional form of Ambartsumian equation with a delay parameter. It may be a challenge to obtain accurate approximate solution of such kinds of fractional delay equations. In the literature, several attempts have been conducted to analyze the fractional Ambartsumian equation. However, the previous approaches in the literature led to approximate power series solutions which converge in subdomains. Such difficulties are solved in this paper via the Homotopy Perturbation Method (HPM). The present approximations are expressed in terms of the Mittag-Leffler functions which converge in the whole domain of the studied model. The convergence issue is also addressed. Several comparisons with the previous published results are discussed. In particular, while the computed solution in the literature is physical in short domains, with our approach it is physical in the whole domain. The results reveal that the HPM is an effective tool to analyzing the fractional Ambartsumian equation.

Suggested Citation

  • Weam Alharbi & Sergei Petrovskii, 2020. "Numerical Analysis for the Fractional Ambartsumian Equation via the Homotopy Herturbation Method," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2247-:d:465144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sayed M. Khaled & Essam R. El-Zahar & Abdelhalim Ebaid, 2019. "Solution of Ambartsumian Delay Differential Equation with Conformable Derivative," Mathematics, MDPI, vol. 7(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahem A. Algehyne & Musaad S. Aldhabani & Mounirah Areshi & Essam R. El-Zahar & Abdelhalim Ebaid & Hind K. Al-Jeaid, 2023. "A Proposed Application of Fractional Calculus on Time Dilation in Special Theory of Relativity," Mathematics, MDPI, vol. 11(15), pages 1-11, July.
    2. Laila F. Seddek & Abdelhalim Ebaid & Essam R. El-Zahar & Mona D. Aljoufi, 2023. "Exact Solution of Non-Homogeneous Fractional Differential System Containing 2 n Periodic Terms under Physical Conditions," Mathematics, MDPI, vol. 11(15), pages 1-12, July.
    3. Aneefah H. S. Alenazy & Abdelhalim Ebaid & Ebrahem A. Algehyne & Hind K. Al-Jeaid, 2022. "Advanced Study on the Delay Differential Equation y ′( t ) = ay ( t ) + by ( ct )," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    4. Weam Alharbi & Snezhana Hristova, 2021. "New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    5. Abdulrahman B. Albidah & Nourah E. Kanaan & Abdelhalim Ebaid & Hind K. Al-Jeaid, 2023. "Exact and Numerical Analysis of the Pantograph Delay Differential Equation via the Homotopy Perturbation Method," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    6. Mona D. Aljoufi, 2024. "Insight on the Nonhomogeneous Pantograph Equation with an Arbitrary Polynomial of Degree n : Explicit Solution," Mathematics, MDPI, vol. 12(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2247-:d:465144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.