IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2151-d455371.html
   My bibliography  Save this article

Innovative Design and Fuzzy Logic Control for An Underground Moving Sieve Jig

Author

Listed:
  • Deyong Shang

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    Institute of Smart Mines and Robotics, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Zhiyuan Yang

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Junjie Wang

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Yuwei Wang

    (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Yue Liu

    (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100084, China)

Abstract

Underground gangue filling technology in coal mines is one of the effective ways to realize green mining. In this paper, a process of underground raw coal primary selection is proposed, which is based on a mechanical sieve jig as the main washing equipment. It refers to the structure of the ground mechanical moving sieve jig. It optimizes and improves the main structure of the jig machine’s driving mechanism and gangue discharge mechanism. It meets the requirements of the technology and the narrow space environment in the underground mine and realizes the effective separation of coal and gangue. In the jigging process of a moving sieve, it is very important to keep the jig bed stable and precisely control the quantity of gangue discharge for improving the system separation accuracy and efficiency. In this paper, a control method based on a fuzzy logic combination is proposed to realize the fuzzy logic control of the motor speed of gangue discharging, which aims at the nonlinear, time-varying uncertainty and pure lag characteristics of the control system of the underground moving sieve jig. Further industrial experiments were carried out and we obtained the variation law of the gangue’s quality in the moving sieve and the output curve of the gangue motor frequency under three working conditions. The experimental results show that the fuzzy logic control algorithm can quickly stabilize the jig bed in the vibrating sieve when the quantity of gangue changes abruptly or fluctuates greatly. It improves the separation efficiency of coal and gangue and effectively solves the problems of nonlinearity, time-varying and hysteresis in the control process of the moving sieve jig.

Suggested Citation

  • Deyong Shang & Zhiyuan Yang & Junjie Wang & Yuwei Wang & Yue Liu, 2020. "Innovative Design and Fuzzy Logic Control for An Underground Moving Sieve Jig," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2151-:d:455371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Zhang & Jixiong Zhang & Zhongya Wu & Yang Chen, 2019. "Overview of Solid Backfilling Technology Based on Coal-Waste Underground Separation in China," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    2. Zhanjie Feng & Wenbing Guo & Feiya Xu & Daming Yang & Weiqiang Yang, 2019. "Control Technology of Surface Movement Scope with Directional Hydraulic Fracturing Technology in Longwall Mining: A Case Study," Energies, MDPI, vol. 12(18), pages 1-18, September.
    3. Weiqing Zhang & Chaowei Dong & Peng Huang & Qiang Sun & Meng Li & Jun Chai, 2020. "Experimental Study on the Characteristics of Activated Coal Gangue and Coal Gangue-Based Geopolymer," Energies, MDPI, vol. 13(10), pages 1-14, May.
    4. Lei Bo & Shangqing Yang & Yang Liu & Zihang Zhang & Yiying Wang & Yanwen Wang, 2023. "Coal Mine Solid Waste Backfill Process in China: Current Status and Challenges," Sustainability, MDPI, vol. 15(18), pages 1-46, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2151-:d:455371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.