IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2125-d452238.html
   My bibliography  Save this article

Wavelet Transform-Statistical Time Features-Based Methodology for Epileptic Seizure Prediction Using Electrocardiogram Signals

Author

Listed:
  • Andrea V. Perez-Sanchez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico)

  • Carlos A. Perez-Ramirez

    (ENAP-Research Group, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus Aeropuerto, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico)

  • Martin Valtierra-Rodriguez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico)

  • Aurelio Dominguez-Gonzalez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico)

  • Juan P. Amezquita-Sanchez

    (ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico)

Abstract

Epilepsy is a brain disorder that affects about 50 million persons around the world and is characterized by generating recurrent seizures, which can put patients in permanent because of falls, drowning, burns, and prolonged seizures that they can suffer. Hence, it is of vital importance to propose a methodology with the capability of predicting a seizure with several minutes before the onset, allowing that the patients take their precautions against injuries. In this regard, a methodology based on the wavelet packet transform (WPT), statistical time features (STFs), and a decision tree classifier (DTC) for predicting an epileptic seizure using electrocardiogram (ECG) signals is presented. Seventeen STFs were analyzed to measure changes in the properties of ECG signals and find characteristics capable of differentiating between healthy and 15 min prior to seizure signals. The effectiveness of the proposed methodology for predicting an epileptic event is demonstrated using a database of seven patients with 10 epileptic seizures, which was provided by the Massachusetts Institute of Technology–Beth Israel Hospital (MIT–BIH). The results show that the proposed methodology is capable of predicting an epileptic seizure 15 min before with an accuracy of 100%. Our results suggest that the use of STFs at frequency bands related to heart activity to find parameters for the prediction of epileptic seizures is suitable.

Suggested Citation

  • Andrea V. Perez-Sanchez & Carlos A. Perez-Ramirez & Martin Valtierra-Rodriguez & Aurelio Dominguez-Gonzalez & Juan P. Amezquita-Sanchez, 2020. "Wavelet Transform-Statistical Time Features-Based Methodology for Epileptic Seizure Prediction Using Electrocardiogram Signals," Mathematics, MDPI, vol. 8(12), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2125-:d:452238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Billeci & Daniela Marino & Laura Insana & Giampaolo Vatti & Maurizio Varanini, 2018. "Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afshin Shoeibi & Marjane Khodatars & Navid Ghassemi & Mahboobeh Jafari & Parisa Moridian & Roohallah Alizadehsani & Maryam Panahiazar & Fahime Khozeimeh & Assef Zare & Hossein Hosseini-Nejad & Abbas K, 2021. "Epileptic Seizures Detection Using Deep Learning Techniques: A Review," IJERPH, MDPI, vol. 18(11), pages 1-33, May.
    2. Apostolos Karasmanoglou & Marios Antonakakis & Michalis Zervakis, 2023. "ECG-Based Semi-Supervised Anomaly Detection for Early Detection and Monitoring of Epileptic Seizures," IJERPH, MDPI, vol. 20(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2125-:d:452238. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.