IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1983-d441119.html
   My bibliography  Save this article

State Feedback Regulation Problem to the Reaction-Diffusion Equation

Author

Listed:
  • Francisco Jurado

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. La Laguna, Revolución Blvd. and Instituto Tecnológico de La Laguna Av., Torreón 27000, Mexico)

  • Andrés A. Ramírez

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. La Laguna, Revolución Blvd. and Instituto Tecnológico de La Laguna Av., Torreón 27000, Mexico)

Abstract

In this work, we explore the state feedback regulator problem (SFRP) in order to achieve the goal for trajectory tracking with harmonic disturbance rejection to one-dimensional (1-D) reaction-diffusion (R-D) equation, namely, a partial differential equation of parabolic type, while taking into account bounded input, output, and disturbance operators, a finite-dimensional exosystem (exogenous system), and the state of the exosystem as the state to the feedback law. As is well-known, the SFRP can be solved only if the so-called Francis (regulator) equations have solution. In our work, we try with the solution of the Francis equations from the 1-D R-D equation following given criteria to the eigenvalues from the exosystem and transfer function of the system, but the state operator is here defined in terms of the Sturm–Liouville differential operator (SLDO). Within this framework, the SFRP is then solved for the 1-D R-D equation. The numerical simulation results validate the performance of the regulator.

Suggested Citation

  • Francisco Jurado & Andrés A. Ramírez, 2020. "State Feedback Regulation Problem to the Reaction-Diffusion Equation," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1983-:d:441119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1983/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés A. Ramírez & Francisco Jurado, 2023. "The Regulator Problem to the Convection–Diffusion Equation," Mathematics, MDPI, vol. 11(8), pages 1-16, April.
    2. Francisco Ureña & Ángel García & Antonio M. Vargas, 2022. "Preface to “Applications of Partial Differential Equations in Engineering”," Mathematics, MDPI, vol. 11(1), pages 1-4, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1983-:d:441119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.