IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1843-d431572.html
   My bibliography  Save this article

Modeling of Strength Characteristics of Polymer Concrete Via the Wave Equation with a Fractional Derivative

Author

Listed:
  • Ludmila Kirianova

    (Department of Applied Mathematics, Moscow State University of Civil Engineering, 129337 Moscow, Russia)

Abstract

The article presents a solution to a boundary value problem for a wave equation containing a fractional derivative with respect to a spatial variable. This model is used to describe oscillation processes in a viscoelastic medium, in particular changes in the deformation-strength characteristics of polymer concrete (dian and dichloroanhydride-1,1-dichloro-2,2-diethylene) under the influence of the gravity force. Based on the obtained solution to the boundary value problem, the article presents four numerical examples corresponding to homogeneous boundary conditions and various initial conditions. The graphs of the found solutions were constructed and the calculation accuracy in the considered examples was estimated.

Suggested Citation

  • Ludmila Kirianova, 2020. "Modeling of Strength Characteristics of Polymer Concrete Via the Wave Equation with a Fractional Derivative," Mathematics, MDPI, vol. 8(10), pages 1-10, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1843-:d:431572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lina Song & Weiguo Wang, 2013. "Solution of the Fractional Black-Scholes Option Pricing Model by Finite Difference Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor N. Orlov & Asmaa M. Elsayed & Elsayed I. Mahmoud, 2022. "Two Linearized Schemes for One-Dimensional Time and Space Fractional Differential Equations," Mathematics, MDPI, vol. 10(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    2. Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
    3. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    4. Batra, Luckshay & Taneja, H.C., 2021. "Approximate-Analytical solution to the information measure’s based quanto option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1843-:d:431572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.