IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1701-d423353.html
   My bibliography  Save this article

Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n -Valued Impulses

Author

Listed:
  • Jan Andres

    (Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic)

Abstract

Ordinary differential equations with n -valued impulses are examined via the associated Poincaré translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney’s chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1–3) and fractal attractors (Examples 4 and 5).

Suggested Citation

  • Jan Andres, 2020. "Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n -Valued Impulses," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1701-:d:423353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fedeli, Alessandro, 2005. "On chaotic set-valued discrete dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1381-1384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Heman & Xing, Zhitao, 2012. "Mixing properties of set-valued maps on hyperspaces via Furstenberg families," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 439-443.
    2. Peris, Alfredo, 2005. "Set-valued discrete chaos," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 19-23.
    3. Llorens-Fuster, Enrique & Petruşel, Adrian & Yao, Jen-Chih, 2009. "Iterated function systems and well-posedness," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1561-1568.
    4. Zhang, Gengrong & Zeng, Fanping & Liu, Xinhe, 2006. "Devaney’s chaotic on induced maps of hyperspace," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 471-475.
    5. Kwietniak, Dominik & Oprocha, Piotr, 2007. "Topological entropy and chaos for maps induced on hyperspaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 76-86.
    6. Andres, Jan, 2020. "Chaos for multivalued maps and induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Liao, Gongfu & Ma, Xianfeng & Wang, Lidong, 2007. "Individual chaos implies collective chaos for weakly mixing discrete dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 604-608.
    8. Liu, Heng & Liao, Gongfu & Hou, Bingzhe, 2009. "The set-valued mapping induced by a non-minimal transitive system is Li–Yorke chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 826-830.
    9. Hou, Bingzhe & Liao, Gongfu & Liu, Heng, 2008. "Sensitivity for set-valued maps induced by M-systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1075-1080.
    10. Gu, Rongbao & Guo, Wenjing, 2006. "On mixing property in set-valued discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 747-754.
    11. Román-Flores, Heriberto & Chalco-Cano, Y., 2005. "Robinson’s chaos in set-valued discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 33-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1701-:d:423353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.