IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1657-d419638.html
   My bibliography  Save this article

Definition and Estimation of Covariate Effect Types in the Context of Treatment Effectiveness

Author

Listed:
  • Yasutaka Chiba

    (Clinical Research Center, Kindai University Hospital, 377-2, Ohno-higashi, Osaka-sayama, Osaka 589–8511, Japan)

Abstract

In some clinical studies, assessing covariate effect types indicating whether a covariate is predictive and/or prognostic is of interest, in addition to the study endpoint. Recently, for a case with a binary outcome, Chiba (Clinical Trials, 2019; 16: 237–245) proposed the new concept of covariate effect type, which is assessed in terms of four response types, and showed that standard subgroup or regression analysis is applicable only in certain cases. Although this concept could be useful for supplementing conventional standard analysis, its application is limited to cases with a binary outcome. In this article, we aim to generalize Chiba’s concept to continuous and time-to-event outcomes. We define covariate effect types based on four response types. It is difficult to estimate the response types from the observed data without making certain assumptions, so we propose a simple method to estimate them under the assumption of independent potential outcomes. Our approach is illustrated using data from a clinical study with a time-to-event outcome.

Suggested Citation

  • Yasutaka Chiba, 2020. "Definition and Estimation of Covariate Effect Types in the Context of Treatment Effectiveness," Mathematics, MDPI, vol. 8(10), pages 1-11, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1657-:d:419638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Ding & Tirthankar Dasgupta, 2016. "A Potential Tale of Two-by-Two Tables From Completely Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 157-168, March.
    2. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    2. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    3. Te-Ling Ma & Tsung-Hui Hu & Chao-Hung Hung & Jing-Houng Wang & Sheng-Nan Lu & Chien-Hung Chen, 2019. "Incidence and predictors of retreatment in chronic hepatitis B patients after discontinuation of entecavir or tenofovir treatment," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
    4. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    5. Shannon M Lynch & Elizabeth Handorf & Kristen A Sorice & Elizabeth Blackman & Lisa Bealin & Veda N Giri & Elias Obeid & Camille Ragin & Mary Daly, 2020. "The effect of neighborhood social environment on prostate cancer development in black and white men at high risk for prostate cancer," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    6. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    7. Si Cheng & Kathleen F Kerr & Heather Thiessen-Philbrook & Steven G Coca & Chirag R Parikh, 2020. "BioPETsurv: Methodology and open source software to evaluate biomarkers for prognostic enrichment of time-to-event clinical trials," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-11, September.
    8. Lori E. Dodd, 2010. "ROC Curves for Continuous Data by KRZANOWSKI, W. J. and HAND, D. J," Biometrics, The International Biometric Society, vol. 66(2), pages 657-658, June.
    9. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    10. C. Jason Liang & Patrick J. Heagerty, 2017. "Rejoinder to discussions on: A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 745-748, September.
    11. Ozcan, Erhan C. & Görgülü, Berk & Baydogan, Mustafa G., 2024. "Column generation-based prototype learning for optimizing area under the receiver operating characteristic curve," European Journal of Operational Research, Elsevier, vol. 314(1), pages 297-307.
    12. C. Jason Liang & Patrick J. Heagerty, 2017. "A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 725-734, September.
    13. Foucher Yohann & Danger Richard, 2012. "Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-22, November.
    14. Jiannan Lu & Yunshu Zhang & Peng Ding, 2020. "Sharp bounds on the relative treatment effect for ordinal outcomes," Biometrics, The International Biometric Society, vol. 76(2), pages 664-669, June.
    15. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    16. Jie Xiong & Zhitong Bing & Yanlin Su & Defeng Deng & Xiaoning Peng, 2014. "An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    17. Yingye Zheng & Patrick J. Heagerty, 2005. "Partly Conditional Survival Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 379-391, June.
    18. Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, February.
    19. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    20. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1657-:d:419638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.