IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p862-d268321.html
   My bibliography  Save this article

On a New Generalization of Banach Contraction Principle with Application

Author

Listed:
  • Hüseyin Işık

    (Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
    Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Babak Mohammadi

    (Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran)

  • Mohammad Reza Haddadi

    (Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran)

  • Vahid Parvaneh

    (Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran)

Abstract

The main purpose of the current work is to present firstly a new generalization of Caristi’s fixed point result and secondly the Banach contraction principle. An example and an application is given to show the usability of our results.

Suggested Citation

  • Hüseyin Işık & Babak Mohammadi & Mohammad Reza Haddadi & Vahid Parvaneh, 2019. "On a New Generalization of Banach Contraction Principle with Application," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:862-:d:268321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/862/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:862-:d:268321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.