Calculating the Weighted Moore–Penrose Inverse by a High Order Iteration Scheme
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Haifa Bin Jebreen & Yurilev Chalco-Cano, 2018. "An Improved Computationally Efficient Method for Finding the Drazin Inverse," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-8, October.
- Predrag S. Stanimirović & Miroslav Ćirić & Igor Stojanović & Dimitrios Gerontitis, 2017. "Conditions for Existence, Representations, and Computation of Matrix Generalized Inverses," Complexity, Hindawi, vol. 2017, pages 1-27, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dilan Ahmed & Mudhafar Hama & Karwan Hama Faraj Jwamer & Stanford Shateyi, 2019. "A Seventh-Order Scheme for Computing the Generalized Drazin Inverse," Mathematics, MDPI, vol. 7(7), pages 1-10, July.
- Kansal, Munish & Kumar, Sanjeev & Kaur, Manpreet, 2022. "An efficient matrix iteration family for finding the generalized outer inverse," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Stanimirović, Predrag S. & Petković, Marko D. & Mosić, Dijana, 2022. "Exact solutions and convergence of gradient based dynamical systems for computing outer inverses," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Stanimirović, Predrag S. & Ćirić, Miroslav & Lastra, Alberto & Sendra, Juan Rafael & Sendra, Juana, 2021. "Representations and symbolic computation of generalized inverses over fields," Applied Mathematics and Computation, Elsevier, vol. 406(C).
- Ashim Kumar & Dijana Mosić & Predrag S. Stanimirović & Gurjinder Singh & Lev A. Kazakovtsev, 2022. "Commuting Outer Inverse-Based Solutions to the Yang–Baxter-like Matrix Equation," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
- Dijana Mosić & Predrag S. Stanimirović & Spyridon D. Mourtas, 2023. "Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
- Stanimirović, Predrag S. & Mosić, Dijana & Wei, Yimin, 2022. "Generalizations of composite inverses with certain image and/or kernel," Applied Mathematics and Computation, Elsevier, vol. 428(C).
- Chan, Eunice Y.S. & Corless, Robert M. & González-Vega, Laureano & Sendra, J. Rafael & Sendra, Juana, 2022. "Inner Bohemian inverses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
More about this item
Keywords
iteration scheme; Moore–Penrose; rectangular matrices; rate of convergence; efficiency index;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:8:p:731-:d:256636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.