IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i6p516-d237595.html
   My bibliography  Save this article

Existence Result and Uniqueness for Some Fractional Problem

Author

Listed:
  • Guotao Wang

    (School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, China
    College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
    Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdeljabbar Ghanmi

    (Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1060, Tunisia)

  • Samah Horrigue

    (Department of Mathematics, Higher Institute of Applied Science and Technology, University of Monastir, Monastir 5000, Tunisia)

  • Samar Madian

    (Basic Sciences Department, Higher Institute for Engineering and Technology, New Damietta 34517, Egypt)

Abstract

In this article, by the use of the lower and upper solutions method, we prove the existence of a positive solution for a Riemann–Liouville fractional boundary value problem. Furthermore, the uniqueness of the positive solution is given. To demonstrate the serviceability of the main results, some examples are presented.

Suggested Citation

  • Guotao Wang & Abdeljabbar Ghanmi & Samah Horrigue & Samar Madian, 2019. "Existence Result and Uniqueness for Some Fractional Problem," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:516-:d:237595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/6/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/6/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pei, Ke & Wang, Guotao & Sun, Yanyan, 2017. "Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 158-168.
    2. Changyou Wang & Haiqiang Zhang & Shu Wang, 2012. "Positive Solution of a Nonlinear Fractional Differential Equation Involving Caputo Derivative," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-16, October.
    3. Chaozhu Hu & Bin Liu & Songfa Xie, 2013. "Monotone Iterative Solutions for Nonlinear Boundary Value Problems of Fractional Differential Equation," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamal Shah & Poom Kumam & Inam Ullah, 2019. "On Ulam Stability and Multiplicity Results to a Nonlinear Coupled System with Integral Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    2. Alberto Cabada & Lucía López-Somoza & Mouhcine Yousfi, 2021. "Green’s Function Related to a n -th Order Linear Differential Equation Coupled to Arbitrary Linear Non-Local Boundary Conditions," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    3. Jeongmi Jeong & Chan-Gyun Kim, 2020. "Existence of Positive Solutions to Singular φ -Laplacian Nonlocal Boundary Value Problems when φ is a Sup-multiplicative-like Function," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    4. Cai, Ruiyang & Ge, Fudong & Chen, YangQuan & Kou, Chunhai, 2019. "Regional observability for Hadamard-Caputo time fractional distributed parameter systems," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 190-202.
    5. Jiqiang Jiang & Donal O’Regan & Jiafa Xu & Yujun Cui, 2019. "Positive Solutions for a Hadamard Fractional p -Laplacian Three-Point Boundary Value Problem," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    6. Wang, Guotao & Qin, Jianfang & Zhang, Lihong & Baleanu, Dumitru, 2020. "Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Pshtiwan Othman Mohammed & José António Tenreiro Machado & Juan L. G. Guirao & Ravi P. Agarwal, 2021. "Adomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equations," Mathematics, MDPI, vol. 9(9), pages 1-18, May.
    8. Fang Wang & Lishan Liu & Yonghong Wu & Yumei Zou, 2019. "Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p -Laplacian Operator," Complexity, Hindawi, vol. 2019, pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:6:p:516-:d:237595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.