IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i5p477-d234437.html
   My bibliography  Save this article

On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process

Author

Listed:
  • Alexander Zeifman

    (Department of Applied Mathematics, Vologda State University, IPI FRC CSC RAS, VolSC RAS, 160000 Vologda, Russia)

  • Yacov Satin

    (Department of Mathematics, Vologda State University, 160000 Vologda, Russia)

  • Ksenia Kiseleva

    (Department of Applied Mathematics, Vologda State University, 160000 Vologda, Russia)

  • Victor Korolev

    (Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow, Russia
    Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China)

Abstract

We consider a multidimensional inhomogeneous birth-death process. In this paper, a general situation is studied in which the intensity of birth and death for each coordinate (“each type of particle”) depends on the state vector of the whole process. A one-dimensional projection of this process on one of the coordinate axes is considered. In this case, a non-Markov process is obtained, in which the transitions to neighboring states are possible in small periods of time. For this one-dimensional process, by modifying the method previously developed by the authors of the note, estimates of the rate of convergence in weakly ergodic and null-ergodic cases are obtained. The simplest example of a two-dimensional process of this type is considered.

Suggested Citation

  • Alexander Zeifman & Yacov Satin & Ksenia Kiseleva & Victor Korolev, 2019. "On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process," Mathematics, MDPI, vol. 7(5), pages 1-10, May.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:477-:d:234437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/5/477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/5/477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G.Sh. Tsitsiashvili & M.A. Osipova & N.V. Koliev & D. Baum, 2002. "A Product Theorem for Markov Chains with Application to PF-Queueing Networks," Annals of Operations Research, Springer, vol. 113(1), pages 141-154, July.
    2. Zeifman, A.I., 1995. "Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 157-173, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André de Palma & Claude Lefèvre, 2018. "Bottleneck models and departure time problems," Working Papers hal-01581519, HAL.
    2. Zeifman, A.I. & Korolev, V.Yu., 2014. "On perturbation bounds for continuous-time Markov chains," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 66-72.
    3. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    4. Korolev, V.Yu. & Chertok, A.V. & Korchagin, A.Yu. & Zeifman, A.I., 2015. "Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 224-241.
    5. Zeifman, A.I. & Korolev, V.Yu. & Satin, Ya.A. & Kiseleva, K.M., 2018. "Lower bounds for the rate of convergence for continuous-time inhomogeneous Markov chains with a finite state space," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 84-90.
    6. Yacov Satin & Alexander Zeifman & Alexander Sipin & Sherif I. Ammar & Janos Sztrik, 2020. "On Probability Characteristics for a Class of Queueing Models with Impatient Customers," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    7. Zeifman, A.I. & Korolev, V. Yu., 2015. "Two-sided bounds on the rate of convergence for continuous-time finite inhomogeneous Markov chains," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 30-36.
    8. Zeifman, A. & Satin, Y. & Kiseleva, K. & Korolev, V. & Panfilova, T., 2019. "On limiting characteristics for a non-stationary two-processor heterogeneous system," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 48-65.
    9. Satin, Y.A. & Razumchik, R.V. & Zeifman, A.I. & Kovalev, I.A., 2022. "Upper bound on the rate of convergence and truncation bound for non-homogeneous birth and death processes on Z," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Erik Doorn, 2011. "Rate of convergence to stationarity of the system M/M/N/N+R," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 336-350, December.
    11. Guodong Pang & Andrey Sarantsev & Yuri Suhov, 2022. "Birth and death processes in interactive random environments," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 269-307, October.
    12. Balsamo, Simonetta & Marin, Andrea, 2013. "Separable solutions for Markov processes in random environments," European Journal of Operational Research, Elsevier, vol. 229(2), pages 391-403.
    13. Alexander Zeifman & Victor Korolev & Yacov Satin, 2020. "Two Approaches to the Construction of Perturbation Bounds for Continuous-Time Markov Chains," Mathematics, MDPI, vol. 8(2), pages 1-25, February.
    14. Granovsky, Boris L. & Zeifman, Alexander I., 1997. "The decay function of nonhomogeneous birth-death processes, with application to mean-field models," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 105-120, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:477-:d:234437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.